예제 #1
0
def create_instance():
    tag_to_id = FLAGS.tag_to_id
    id_to_tag = {v: k for k, v in tag_to_id.items()}

    # 字典生成
    print "dict building......"
    if not isExists(FLAGS.dict_file):
        print "build dict starting..."
        train_file = read_conll_file(FLAGS.train_file)
        word_to_id, _ = word_mapping(train_file, FLAGS.min_freq)
        write_file(word_to_id, FLAGS.dict_file)
    else:
        print "build dict from pickle..."
        word_to_id = load_dict(FLAGS.dict_file)

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

    with sess.as_default():
        print "begin for create model..."
        model = create_model(sess, word_to_id, id_to_tag) # just struct

        # load model
        model.logger.info("testing ner")
        ckpt = tf.train.get_checkpoint_state(FLAGS.model_path)
        model.logger.info("Reading model parameters from %s" % ckpt.model_checkpoint_path)
        model.saver.restore(sess, ckpt.model_checkpoint_path)

    return word_to_id, tag_to_id, id_to_tag, sess, model
예제 #2
0
def train():
    # 加载数据集
    train_sentences = dl.load_sentences(FLAGS.train_file)
    dev_sentences = dl.load_sentences(FLAGS.dev_file)
    test_sentences = dl.load_sentences(FLAGS.test_file)

    # 转换编码 bio转bioes
    dl.update_tag_scheme(train_sentences, FLAGS.tag_schema)
    dl.update_tag_scheme(test_sentences, FLAGS.tag_schema)
    dl.update_tag_scheme(dev_sentences, FLAGS.tag_schema)

    # 创建单词映射及标签映射
    if not os.path.isfile(FLAGS.map_file):
        _, word_to_id, id_to_word = dl.word_mapping(train_sentences)
        _, tag_to_id, id_to_tag = dl.tag_mapping(train_sentences)

        with open(FLAGS.map_file, 'wb') as f:
            pickle.dump([word_to_id, id_to_word, tag_to_id, id_to_tag], f)
    else:
        with open(FLAGS.map_file, 'rb') as f:
            unpickler = pickle.Unpickler(f)
            scores = unpickler.load()
            word_to_id, id_to_word, tag_to_id, id_to_tag = scores

    train_data = dl.prapare_dataset(train_sentences, word_to_id, tag_to_id)
    dev_data = dl.prapare_dataset(train_sentences, word_to_id, tag_to_id)
    test_data = dl.prapare_dataset(train_sentences, word_to_id, tag_to_id)

    print('train_data %i, dev_data_num %i, test_data_num %i' %
          (len(train_data), len(dev_data), len(test_data)))

    mu.make_path(FLAGS)
    if os.path.isfile(FLAGS.config_file):
        config = mu.load_config(FLAGS.config_file)
    else:
        config = mu.config_model(FLAGS, word_to_id, tag_to_id)
        mu.save_config(config, FLAGS.config_file)
    log_path = os.path.join('log', FLAGS.log_file)
    logger = mu.get_log(log_path)
    mu.print_config(config, logger)
    print('aa')
예제 #3
0
def train():
    # 1、加载数据集
    train_sentences = data_loader.load_sentences(FLAGS.train_file)
    dev_sentences = data_loader.load_sentences(FLAGS.dev_file)
    test_sentences = data_loader.load_sentences(FLAGS.test_file)

    # 2、转换编码 BIO->BIOES
    data_loader.update_tag_scheme(train_sentences, FLAGS.tag_schema)
    data_loader.update_tag_scheme(dev_sentences, FLAGS.tag_schema)
    data_loader.update_tag_scheme(test_sentences, FLAGS.tag_schema)

    # 3、创建单词映射与标签映射
    if not os.path.isfile(FLAGS.map_file):
        _, word_to_id, id_to_word = data_loader.word_mapping(train_sentences)
        _, tag_to_id, id_to_tag = data_loader.tag_mapping(train_sentences)

        with open(FLAGS.map_file, "wb") as f:
            # 序列化pickle.dump(obj, file, [,protocol]),,序列化对象,将对象obj保存到文件file中去。
            pickle.dump([word_to_id, id_to_word, tag_to_id, id_to_tag], f)
    else:
        # 反序列化对象,将文件中的数据解析为一个python对象。file中有read()接口和readline()接口
        with open(FLAGS.map_file, "rb") as f:
            word_to_id, id_to_word, tag_to_id, id_to_tag = pickle.load(f)

    # 4、数据预处理
    train_data = data_loader.prepare_dataset(train_sentences, word_to_id,
                                             tag_to_id)

    dev_data = data_loader.prepare_dataset(dev_sentences, word_to_id,
                                           tag_to_id)

    test_data = data_loader.prepare_dataset(test_sentences, word_to_id,
                                            tag_to_id)

    model_utils.make_path(FLAGS)

    config = model_utils.config_model(FLAGS, word_to_id, tag_to_id)
예제 #4
0
def train():
    # 加载数据集
    train_sentences = data_loader.load_sentences(FLAGS.train_file)
    dev_sentences = data_loader.load_sentences(FLAGS.dev_file)
    test_sentences = data_loader.load_sentences(FLAGS.test_file)

    # 转换编码
    data_loader.update_tag_scheme(train_sentences, FLAGS.tag_schema)
    data_loader.update_tag_scheme(dev_sentences, FLAGS.tag_schema)
    data_loader.update_tag_scheme(test_sentences, FLAGS.tag_schema)

    # 创建单词和词典映射
    if not os.path.isfile(FLAGS.map_file):
        if FLAGS.pre_emb:
            dico_words_train = data_loader.word_mapping(train_sentences)[0]
            dico_word, word_to_id, id_to_word = data_utils.augment_with_pretrained(
                dico_words_train.copy(), FLAGS.emb_file,
                list(
                    itertools.chain.from_iterable([[w[0] for w in s]
                                                   for s in test_sentences])))
        else:
            _, word_to_id, id_to_word = data_loader.word_mapping(
                train_sentences)
        _, tag_to_id, id_to_tag = data_loader.tag_mapping(train_sentences)
        with open(FLAGS.map_file, 'wb') as f:
            pickle.dump([word_to_id, id_to_word, tag_to_id, id_to_tag], f)
    else:
        with open(FLAGS.map_file, 'rb') as f:
            word_to_id, id_to_word, tag_to_id, id_to_tag = pickle.load(f)

    # 准备数据
    train_data = data_loader.prepare_dataset(train_sentences, word_to_id,
                                             tag_to_id)
    dev_data = data_loader.prepare_dataset(dev_sentences, word_to_id,
                                           tag_to_id)
    test_data = data_loader.prepare_dataset(test_sentences, word_to_id,
                                            tag_to_id)

    # 将数据分批处理
    train_manager = data_utils.BatchManager(train_data, FLAGS.batch_size)
    dev_manager = data_utils.BatchManager(dev_data, FLAGS.batch_size)
    test_manager = data_utils.BatchManager(test_data, FLAGS.batch_size)

    # 创建不存在的文件夹
    model_utils.make_path(FLAGS)

    # 判断配置文件
    if os.path.isfile(FLAGS.config_file):
        config = model_utils.load_config(FLAGS.config_file)
    else:
        config = model_utils.config_model(FLAGS, word_to_id, tag_to_id)
        model_utils.save_config(config, FLAGS.config_file)

    # 配置印logger
    log_path = os.path.join('log', FLAGS.log_file)
    logger = model_utils.get_logger(log_path)
    model_utils.print_config(config, logger)

    tf_config = tf.ConfigProto(allow_soft_placement=True)
    tf_config.gpu_options.allow_growth = True

    step_per_epoch = train_manager.len_data
    with tf.Session(config=tf_config) as sess:
        model = model_utils.create(sess, Model, FLAGS.ckpt_path, load_word2vec,
                                   config, id_to_word, logger)
        logger.info('开始训练')
        loss = []
        start = time.time()
        for i in range(100):
            for batch in train_manager.iter_batch(shuffle=True):
                step, batch_loss = model.run_step(sess, True, batch)
                loss.append(batch_loss)
                if step % FLAGS.setps_chech == 0:
                    iteration = step // step_per_epoch + 1
                    logger.info(
                        "iteration{}: step{}/{}, NER loss:{:>9.6f}".format(
                            iteration, step % step_per_epoch, step_per_epoch,
                            np.mean(loss)))
                    loss = []
            best = evaluate(sess, model, 'dev', dev_manager, id_to_tag, logger)

            if best:
                model_utils.save_model(sess, model, FLAGS.ckpt_path, logger)
            evaluate(sess, model, 'test', test_manager, id_to_tag, logger)
        t = time.time() - start
        logger.info('cost time: %f' % t)
예제 #5
0
	data_loader.update_tag_scheme(train_sentences, FLAGS.tag_schema)

	data_loader.update_tag_scheme(test_sentences, FLAGS.tag_schema)

	data_loader.update_tag_scheme(dev_sentences, FLAGS.tag_schema)



# 创建单词映射及标签映射

if not os.path.isfile(FLAGS.map_file):

	if FLAGS.pre_emb:

	dico_words_train = data_loader.word_mapping(train_sentences)[0]

	dico_word, word_to_id, id_to_word = data_utils.augment_with_pretrained(

	dico_words_train.copy(),

	FLAGS.emb_file,

	list(

	itertools.chain.from_iterable(

	[[w[0] for w in s] for s in test_sentences]

	)
예제 #6
0
def train():
    # 加载数据集
    train_sentences = data_loader.load_sentences(FLAGS.train_file)
    dev_sentences = data_loader.load_sentences(FLAGS.dev_file)
    test_sentences = data_loader.load_sentences(FLAGS.test_file)

    # 转换编码 bio转bioes
    data_loader.update_tag_scheme(train_sentences, FLAGS.tag_schema)
    data_loader.update_tag_scheme(test_sentences, FLAGS.tag_schema)
    data_loader.update_tag_scheme(dev_sentences, FLAGS.tag_schema)

    # 创建单词映射及标签映射
    if not os.path.isfile(FLAGS.map_file):
        if FLAGS.pre_emb:
            dico_words_train = data_loader.word_mapping(train_sentences)[0]
            dico_word, word_to_id, id_to_word = data_utils.augment_with_pretrained(
                dico_words_train.copy(),
                FLAGS.emb_file,
                list(
                    itertools.chain.from_iterable(
                        [[w[0] for w in s] for s in test_sentences]
                    )
                )
            )
        else:
            _, word_to_id, id_to_word = data_loader.word_mapping(train_sentences)

        _, tag_to_id, id_to_tag = data_loader.tag_mapping(train_sentences)

        with open(FLAGS.map_file, "wb") as f:
            pickle.dump([word_to_id, id_to_word, tag_to_id, id_to_tag], f)
    else:
        with open(FLAGS.map_file, 'rb') as f:
            word_to_id, id_to_word, tag_to_id, id_to_tag = pickle.load(f)

    train_data = data_loader.prepare_dataset(
        train_sentences, word_to_id, tag_to_id
    )

    dev_data = data_loader.prepare_dataset(
        dev_sentences, word_to_id, tag_to_id
    )

    test_data = data_loader.prepare_dataset(
        test_sentences, word_to_id, tag_to_id
    )

    train_manager = data_utils.BatchManager(train_data, FLAGS.batch_size)
    dev_manager = data_utils.BatchManager(dev_data, FLAGS.batch_size)
    test_manager = data_utils.BatchManager(test_data, FLAGS.batch_size)

    print('train_data_num %i, dev_data_num %i, test_data_num %i' % (len(train_data), len(dev_data), len(test_data)))

    model_utils.make_path(FLAGS)

    if os.path.isfile(FLAGS.config_file):
        config = model_utils.load_config(FLAGS.config_file)
    else:
        config = model_utils.config_model(FLAGS, word_to_id, tag_to_id)
        model_utils.save_config(config, FLAGS.config_file)

    log_path = os.path.join("log", FLAGS.log_file)
    logger = model_utils.get_logger(log_path)
    model_utils.print_config(config, logger)

    tf_config = tf.ConfigProto()
    tf_config.gpu_options.allow_growth = True
    steps_per_epoch =train_manager.len_data
    with tf.Session(config = tf_config) as sess:
        model = model_utils.create(sess, Model, FLAGS.ckpt_path, load_word2vec, config, id_to_word, logger)
        logger.info("开始训练")
        loss = []
        for i in range(100):
            for batch in train_manager.iter_batch(shuffle=True):
                step, batch_loss = model.run_step(sess, True, batch)
                loss.append(batch_loss)
                if step % FLAGS.setps_chech== 0:
                    iterstion = step // steps_per_epoch + 1
                    logger.info("iteration:{} step{}/{},NER loss:{:>9.6f}".format(iterstion, step%steps_per_epoch, steps_per_epoch, np.mean(loss)))
                    loss = []

            best = evaluate(sess,model,"dev", dev_manager, id_to_tag, logger)

            if best:
                model_utils.save_model(sess, model, FLAGS.ckpt_path, logger)
            evaluate(sess, model, "test", test_manager, id_to_tag, logger)