예제 #1
0
def run_training(save_result: bool = True):

    images_df = dm.load_image_paths(config.DATA_FOLDER)
    X_train, X_test, y_train, y_test = dm.get_train_test_target(images_df)

    enc = pp.TargetEncoder()
    enc.fit(y_train)
    y_train = enc.transform(y_train)

    pipe.pipe.fit(X_train, y_train)

    if save_result:
        joblib.dump(enc, config.ENCODER_PATH)
        dm.save_pipeline_keras(pipe.pipe)
예제 #2
0
파일: predict.py 프로젝트: Harphies/Courses
import data_management as dm
import config


def make_prediction(*, path_to_images) -> float:
    """Make a prediction using the saved model pipeline."""

    # Load data
    # create a dataframe with columns = ['image', 'target']
    # column "image" contains path to image
    # columns target can contain all zeros, it doesn't matter

    dataframe = path_to_images  # needs to load as above described
    pipe = dm.load_pipeline_keras()
    predictions = pipe.pipe.predict(dataframe)
    #response = {'predictions': predictions, 'version': _version}

    return predictions


if __name__ == '__main__':

    from sklearn.externals import joblib

    images_df = dm.load_image_paths(config.DATA_FOLDER)
    X_train, X_test, y_train, y_test = dm.get_train_test_target(images_df)

    pipe = joblib.load(config.PIPELINE_PATH)

    predictions = pipe.predict(X_test)
    print(predictions)