def main(args=None): # parse arguments if args is None: args = sys.argv[1:] args = parse_args(args) # data generator dataset = data_manager.init_imgreid_dataset( dataset_path=args.dataset_path, name=args.dataset ) print('dataset.train', len(dataset.train), dataset.num_train_pids) train_generator = DataGenerator(dataset.train[0], dataset.train[1], batch_size=args.batch_size, num_classes=dataset.num_train_pids, shuffle=True, target_size=(args.height, args.width), learn_region=args.learn_region) # create the callbacks callbacks = create_callbacks(args) # create model model = modellib.HACNN(mode='training', num_classes=dataset.num_train_pids, batch_size=args.batch_size, learn_region=args.learn_region).model # save model-summary if args.save_summary: plot_model(model, show_shapes=True, to_file='model.png') print(model.summary()) # load saved weight if args.snapshot: model.load_weights(args.snapshot, by_name=True, skip_mismatch=False) # compile model if args.learn_region: model.compile( loss='categorical_crossentropy', # loss_weights={"classifier_global": 0.5, "classifier_local": 0.5}, metrics=['accuracy'], optimizer=keras.optimizers.Adam(lr=0.0005, beta_1=0.9, beta_2=0.999), ) else: model.compile( # loss=losses.cross_entropy_label_smooth(num_classes=dataset.num_train_pids), loss='categorical_crossentropy', metrics=['accuracy'], optimizer=keras.optimizers.Adam(lr=0.0005, beta_1=0.9, beta_2=0.999), ) model.fit_generator( generator=train_generator, epochs=args.epochs, verbose=1, callbacks=callbacks, )
def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_imgreid_dataset( root=args.root, name=args.dataset, split_id=args.split_id, cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split, use_lmdb=args.use_lmdb, ) transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = True if use_gpu else False trainloader = DataLoader( ImageDataset(dataset.train, transform=transform_train, use_lmdb=args.use_lmdb, lmdb_path=dataset.train_lmdb_path), batch_size=args.train_batch, shuffle=True, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader( ImageDataset(dataset.query, transform=transform_test, use_lmdb=args.use_lmdb, lmdb_path=dataset.query_lmdb_path), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( ImageDataset(dataset.gallery, transform=transform_test, use_lmdb=args.use_lmdb, lmdb_path=dataset.gallery_lmdb_path), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent'}, use_gpu=use_gpu) print("Model size: {:.3f} M".format(count_num_param(model))) criterion = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu) optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma) start_epoch = args.start_epoch if args.fixbase_epoch > 0: if hasattr(model, 'classifier') and isinstance(model.classifier, nn.Module): optimizer_tmp = init_optim(args.optim, model.classifier.parameters(), args.fixbase_lr, args.weight_decay) else: print("Warn: model has no attribute 'classifier' and fixbase_epoch is reset to 0") args.fixbase_epoch = 0 if args.load_weights: # load pretrained weights but ignore layers that don't match in size print("Loading pretrained weights from '{}'".format(args.load_weights)) checkpoint = torch.load(args.load_weights) pretrain_dict = checkpoint['state_dict'] model_dict = model.state_dict() pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()} model_dict.update(pretrain_dict) model.load_state_dict(model_dict) if args.resume: checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) start_epoch = checkpoint['epoch'] rank1 = checkpoint['rank1'] print("Loaded checkpoint from '{}'".format(args.resume)) print("- start_epoch: {}\n- rank1: {}".format(start_epoch, rank1)) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print("Evaluate only") test(model, queryloader, galleryloader, use_gpu) return start_time = time.time() train_time = 0 best_rank1 = -np.inf best_epoch = 0 print("==> Start training") if args.fixbase_epoch > 0: print("Train classifier for {} epochs while keeping base network frozen".format(args.fixbase_epoch)) for epoch in range(args.fixbase_epoch): start_train_time = time.time() train(epoch, model, criterion, optimizer_tmp, trainloader, use_gpu, freeze_bn=True) train_time += round(time.time() - start_train_time) del optimizer_tmp print("Now open all layers for training") for epoch in range(start_epoch, args.max_epoch): start_train_time = time.time() train(epoch, model, criterion, optimizer, trainloader, use_gpu) train_time += round(time.time() - start_train_time) scheduler.step() if (epoch+1) > args.start_eval and args.eval_step > 0 and (epoch+1) % args.eval_step == 0 or (epoch+1) == args.max_epoch: print("==> Test") rank1 = test(model, queryloader, galleryloader, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint({ 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch+1) + '.pth.tar')) print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_imgreid_dataset( root=args.root, name=args.dataset, split_id=args.split_id, cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split, use_lmdb=args.use_lmdb, ) transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = True if use_gpu else False trainloader = DataLoader( ImageDataset(dataset.train, transform=transform_train, use_lmdb=args.use_lmdb, lmdb_path=dataset.train_lmdb_path), sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader( ImageDataset(dataset.query, transform=transform_test, use_lmdb=args.use_lmdb, lmdb_path=dataset.train_lmdb_path), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( ImageDataset(dataset.gallery, transform=transform_test, use_lmdb=args.use_lmdb, lmdb_path=dataset.train_lmdb_path), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'}) print("Model size: {:.3f} M".format(count_num_param(model))) criterion_xent = CrossEntropyLabelSmooth( num_classes=dataset.num_train_pids, use_gpu=use_gpu) criterion_htri = TripletLoss(margin=args.margin) optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma) if args.load_weights: # load pretrained weights but ignore layers that don't match in size if check_isfile(args.load_weights): checkpoint = torch.load(args.load_weights) pretrain_dict = checkpoint['state_dict'] model_dict = model.state_dict() pretrain_dict = { k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size() } model_dict.update(pretrain_dict) model.load_state_dict(model_dict) print("Loaded pretrained weights from '{}'".format( args.load_weights)) if args.resume: if check_isfile(args.resume): checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) args.start_epoch = checkpoint['epoch'] rank1 = checkpoint['rank1'] print("Loaded checkpoint from '{}'".format(args.resume)) print("- start_epoch: {}\n- rank1: {}".format( args.start_epoch, rank1)) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print("Evaluate only") distmat = test(model, queryloader, galleryloader, use_gpu, return_distmat=True) if args.vis_ranked_res: visualize_ranked_results( distmat, dataset, save_dir=osp.join(args.save_dir, 'ranked_results'), topk=20, ) return start_time = time.time() train_time = 0 best_rank1 = -np.inf best_epoch = 0 print("==> Start training") for epoch in range(args.start_epoch, args.max_epoch): start_train_time = time.time() train(epoch, model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu) train_time += round(time.time() - start_train_time) scheduler.step() if (epoch + 1) > args.start_eval and args.eval_step > 0 and ( epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch: print("==> Test") rank1 = test(model, queryloader, galleryloader, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint( { 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')) print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format( best_rank1, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print( "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.". format(elapsed, train_time))
def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if args.use_cpu: use_gpu = False if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt')) else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt')) print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_imgreid_dataset( root=args.root, name=args.dataset, split_id=args.split_id, cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split, use_lmdb=args.use_lmdb, ) transform_train = T.Compose([ T.Random2DTranslation(args.height, args.width), # T.Resize((args.height, args.width)), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) transform_test = T.Compose([ T.Resize((args.height, args.width)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = True if use_gpu else False trainset = ImageDataset(dataset.train, transform=transform_train, use_lmdb=args.use_lmdb, lmdb_path=dataset.train_lmdb_path) trainloader = DataLoader( trainset, batch_size=args.train_batch, shuffle=True, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryset = ImageDataset(dataset.query, transform=transform_test, use_lmdb=args.use_lmdb, lmdb_path=dataset.query_lmdb_path) queryloader = DataLoader( queryset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryset = ImageDataset(dataset.gallery, transform=transform_test, use_lmdb=args.use_lmdb, lmdb_path=dataset.gallery_lmdb_path) galleryloader = DataLoader( galleryset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent'}, use_gpu=use_gpu) print("Model size: {:.3f} M".format(count_num_param(model))) # summary(model, (3, 160, 64)) criterion = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu) optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma) start_epoch = args.start_epoch if args.fixbase_epoch > 0: if hasattr(model, 'classifier') and isinstance(model.classifier, nn.Module): optimizer_tmp = init_optim(args.optim, model.classifier.parameters(), args.fixbase_lr, args.weight_decay) else: print( "Warn: model has no attribute 'classifier' and fixbase_epoch is reset to 0" ) args.fixbase_epoch = 0 if args.load_weights: # load pretrained weights but ignore layers that don't match in size print("Loading pretrained weights from '{}'".format(args.load_weights)) if torch.cuda.is_available(): checkpoint = torch.load(args.load_weights) else: checkpoint = torch.load(args.load_weights, map_location='cpu') pretrain_dict = checkpoint['state_dict'] model_dict = model.state_dict() pretrain_dict = { k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size() } model_dict.update(pretrain_dict) model.load_state_dict(model_dict) if args.resume: checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) start_epoch = checkpoint['epoch'] rank1 = checkpoint['rank1'] print("Loaded checkpoint from '{}'".format(args.resume)) print("- start_epoch: {}\n- rank1: {}".format(start_epoch, rank1)) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print("Evaluate only") test(model, queryloader, galleryloader, use_gpu) return start_time = time.time() train_time = 0 best_rank1 = -np.inf best_epoch = 0 print("==> Start training") if args.fixbase_epoch > 0: print( "Train classifier for {} epochs while keeping base network frozen". format(args.fixbase_epoch)) for epoch in range(args.fixbase_epoch): start_train_time = time.time() train(epoch, model, criterion, optimizer_tmp, trainloader, use_gpu, freeze_bn=True) train_time += round(time.time() - start_train_time) del optimizer_tmp print("Now open all layers for training") for epoch in range(start_epoch, args.max_epoch): start_train_time = time.time() train(epoch, model, criterion, optimizer, trainloader, use_gpu) train_time += round(time.time() - start_train_time) scheduler.step() if (epoch + 1) > args.start_eval and args.eval_step > 0 and ( epoch + 1) % args.eval_step == 0 or (epoch + 1) == args.max_epoch: print("==> Test") rank1 = test(model, queryloader, galleryloader, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint( { 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')) ''' if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint({ 'state_dict': state_dict, 'epoch': epoch, }, True, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch+1) + '.pth.tar')) ''' print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format( best_rank1, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print( "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.". format(elapsed, train_time))
def main(): torch.manual_seed(args.seed) os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices use_gpu = torch.cuda.is_available() if not args.evaluate: sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'), mode='a') else: sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'), mode='a') print("==========\nArgs:{}\n==========".format(args)) if use_gpu: print("Currently using GPU {}".format(args.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(args.seed) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(args.dataset)) dataset = data_manager.init_imgreid_dataset(name=args.dataset, dataset_dir=args.root, fore_dir=args.fore_dir) transform_train = ST.Compose([ ST.Scale((args.height, args.width), interpolation=3), ST.RandomHorizontalFlip(), ST.ToTensor(), ST.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ST.RandomErasing(0.5) ]) transform_test = ST.Compose([ ST.Scale((args.height, args.width), interpolation=3), ST.ToTensor(), ST.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) pin_memory = True if use_gpu else False trainloader = DataLoader( ImageDataset_hardSplit_seg(dataset.train, transform=transform_train), sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances), batch_size=args.train_batch, num_workers=args.workers, pin_memory=pin_memory, drop_last=True, ) queryloader = DataLoader( ImageDataset(dataset.query, transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( ImageDataset(dataset.gallery, transform=transform_test), batch_size=args.test_batch, shuffle=False, num_workers=args.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(args.arch)) model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids) print(model) criterion_xent = CrossEntropyLabelSmooth(use_gpu=use_gpu) criterion_htri = TripletLoss() criterion_mask = MaskLoss() criterion_split = HardSplitLoss() criterion_cluster = ClusterLoss() optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma) if args.resume: if check_isfile(args.resume): checkpoint = torch.load(args.resume) model.load_state_dict(checkpoint['state_dict']) args.start_epoch = checkpoint['epoch'] rank1 = checkpoint['rank1'] print("Loaded checkpoint from '{}'".format(args.resume)) print("- start_epoch: {}\n- rank1: {}".format( args.start_epoch, rank1)) if use_gpu: model = nn.DataParallel(model).cuda() if args.evaluate: print("Evaluate only") test(model, queryloader, galleryloader, use_gpu) return start_time = time.time() train_time = 0 best_rank1 = -np.inf best_epoch = 0 print("==> Start training") for epoch in range(args.start_epoch, args.max_epoch): start_train_time = time.time() train(epoch, model, criterion_xent, criterion_htri, criterion_mask, criterion_split, criterion_cluster, optimizer, trainloader, use_gpu) train_time += round(time.time() - start_train_time) scheduler.step() if (epoch + 1) > args.start_eval and ( epoch + 1) % args.eval_step == 0 or epoch == 0: print("==> Test") rank1 = test(model, queryloader, galleryloader, use_gpu) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint( { 'state_dict': state_dict, 'rank1': rank1, 'epoch': epoch, }, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar')) print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format( best_rank1, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print( "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.". format(elapsed, train_time)) print("==========\nArgs:{}\n==========".format(args))
def main(args=None): # parse arguments if args is None: args = sys.argv[1:] args = parse_args(args) # data generator dataset = data_manager.init_imgreid_dataset( dataset_path=args.dataset_path, name=args.dataset ) query_generator = DataGenerator(dataset.query[0], dataset.query[1], camids=dataset.query[2], batch_size=args.batch_size, num_classes=dataset.num_query_pids, target_size=(args.height, args.width), learn_region=args.learn_region, shuffle=True, mode='inference') gallery_generator = DataGenerator( dataset.gallery[0], dataset.gallery[1], camids=dataset.gallery[2], batch_size=args.batch_size, num_classes=dataset.num_gallery_pids, target_size=(args.height, args.width), learn_region=args.learn_region, shuffle=True, mode='inference') model = modellib.HACNN(mode='inference', num_classes=dataset.num_query_pids, batch_size=args.batch_size, learn_region=args.learn_region).model load_weights(model, filepath=args.snapshot, by_name=True) ''' img_path = '/Users/luke/Documents/ml_datasets/person_re_id/videotag_scene/dataset_7_lite/bounding_box_train/3434_0096.jpg' img = image.load_img(img_path, target_size=(args.height, args.width)) img = image.img_to_array(img) ouput = model.predict(np.array([img]) ,verbose=1) print('ouput', np.array(ouput).shape) print('ouput', np.argmax(ouput[0]), np.argmax(ouput[1])) ''' # evaluate qf, q_pids, q_camids = [], [], [] for index in range(len(query_generator)): imgs, pids, camids = query_generator[index] # print('query', index) features = model.predict(imgs ,verbose=0) # print('features', features) qf.append(features) q_pids.extend(pids) q_camids.extend(camids) qf = np.concatenate(qf, axis=0) q_pids = np.asarray(q_pids) q_camids = np.asarray(q_camids) # print(qf.shape) gf, g_pids, g_camids = [], [], [] for index in range(len(gallery_generator)): # print('gallery', index) imgs, pids, camids = gallery_generator[index] features = model.predict(imgs ,verbose=0) # print('features', features) gf.append(features) g_pids.extend(pids) g_camids.extend(camids) gf = np.concatenate(gf, axis=0) g_pids = np.asarray(g_pids) g_camids = np.asarray(g_camids) m, n = qf.shape[0], gf.shape[0] ''' # qf = qf*0.001 qf_pow = np.square(qf) qf_sum = np.sum(qf_pow, axis=1, keepdims=True) qf_ext = np.repeat(qf_sum, n, axis=1) # gf = gf*0.01 gf_pow = np.square(gf) gf_sum = np.sum(gf_pow, axis=1, keepdims=True) gf_ext = np.repeat(gf_sum, m, axis=1) gf_ext_t = gf_ext.T distmat = qf_ext + gf_ext_t distmat = distmat + np.dot(qf, gf.T)*(-2.0) ''' print("Compute pairwise euclidean distances") qf = np.expand_dims(qf, axis=1) qf = np.repeat(qf, n, axis=1) gf = np.expand_dims(gf, axis=0) gf = np.repeat(gf, m, axis=0) distmat = np.linalg.norm(qf-gf, axis=2, keepdims=True) distmat = np.squeeze(distmat, axis=2) print("Computing CMC and mAP") cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, dataset_type=args.dataset) print("Results ----------") print("mAP: {:.1%}".format(mAP)) print("CMC curve") ranks=[1, 5, 10, 20] for r in ranks: print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1])) correct_matched = (g_pids == q_pids[:, np.newaxis]).astype(np.int32) correct_dist_aver = np.multiply(distmat, correct_matched) wrong_matched = (g_pids != q_pids[:, np.newaxis]).astype(np.int32) wrong_dist_aver = np.multiply(distmat, wrong_matched) print('정답의 distance 평균 : ', np.average(correct_dist_aver)) print('오답의 distance 평균 : ', np.average(wrong_dist_aver)) print("------------------")
def main(): torch.manual_seed(1) os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu_devices use_gpu = torch.cuda.is_available() sys.stdout = Logger(config.save_dir, config.checkpoint_suffix, config.evaluate) print("\n==========\nArgs:") config.print_parameter() print("==========\n") if use_gpu: print("Currently using GPU {}".format(config.gpu_devices)) cudnn.benchmark = True torch.cuda.manual_seed_all(1) else: print("Currently using CPU (GPU is highly recommended)") print("Initializing dataset {}".format(config.dataset)) dataset = data_manager.init_imgreid_dataset(name=config.dataset, root=config.data_root) transform_train = T.Compose([ T.Random2DTranslation(config.height, config.width), T.RandomHorizontalFlip(), T.ToTensor(), T.Normalize(mean=data_mean, std=data_std), ]) transform_test = T.Compose([ T.Resize((config.height, config.width)), T.ToTensor(), T.Normalize(mean=data_mean, std=data_std), ]) pin_memory = True if use_gpu else False # train_batch_sampler = BalancedBatchSampler(dataset.train, n_classes=8, n_samples=8) # train_batch_sampler = CCLBatchSampler(dataset.train, n_classes=n_classes, n_samples=n_samples) # train_batch_sampler = CCLBatchSamplerV2(dataset.train, n_classes=n_classes, pos_samp_cnt=pos_samp_cnt, # neg_samp_cnt=neg_samp_cnt, each_cls_max_cnt=each_cls_max_cnt) train_batch_sampler = ClassSampler(dataset.train, sample_cls_cnt=config.sample_cls_cnt, each_cls_cnt=config.each_cls_cnt) # trainloader = DataLoader( # ImageDataset(dataset.train, transform=transform_train), # batch_sampler=train_batch_sampler, batch_size=args.train_batch, # shuffle=True, num_workers=args.workers, pin_memory=pin_memory, drop_last=True # ) trainloader = DataLoader(ImageDatasetWCL(dataset, data_type='train', merge_h=256, merge_w=256, mean_std=[data_mean, data_std]), batch_sampler=train_batch_sampler, num_workers=config.workers, pin_memory=pin_memory) queryloader = DataLoader( ImageDatasetWCL(dataset.query, data_type='query', merge_h=256, merge_w=256, mean_std=[data_mean, data_std]), batch_size=config.test_batch, shuffle=False, num_workers=config.workers, pin_memory=pin_memory, drop_last=False, ) galleryloader = DataLoader( ImageDatasetWCL(dataset.gallery, data_type='gallery', merge_h=256, merge_w=256, mean_std=[data_mean, data_std]), batch_size=config.test_batch, shuffle=False, num_workers=config.workers, pin_memory=pin_memory, drop_last=False, ) if config.dataset == 'vehicleid': train_query_loader = None train_gallery_loader = None else: train_query_loader = DataLoader( ImageDatasetWCL(dataset.train_query, data_type='train_query', merge_h=256, merge_w=256, mean_std=[data_mean, data_std]), batch_size=config.test_batch, shuffle=False, num_workers=config.workers, pin_memory=pin_memory, drop_last=False, ) train_gallery_loader = DataLoader( ImageDatasetWCL(dataset.train_gallery, data_type='train_gallery', merge_h=256, merge_w=256, mean_std=[data_mean, data_std]), batch_size=config.test_batch, shuffle=False, num_workers=config.workers, pin_memory=pin_memory, drop_last=False, ) print("Initializing model: {}".format(config.arch)) model = init_model(name=config.arch, num_classes=dataset.num_train_pids, loss_type=config.loss_type) print("Model size: {:.3f} M".format(count_num_param(model))) if config.loss_type == 'xent': criterion = [nn.CrossEntropyLoss(), nn.CrossEntropyLoss()] elif config.loss_type == 'xent_triplet': criterion = XentTripletLoss( margin=config.margin, triplet_selector=RandomNegativeTripletSelector( margin=config.margin), each_cls_cnt=config.each_cls_cnt, n_class=config.sample_cls_cnt) elif config.loss_type == 'xent_tripletv2': criterion = XentTripletLossV2( margin=config.margin, triplet_selector=RandomNegativeTripletSelectorV2( margin=config.margin), each_cls_cnt=config.each_cls_cnt, n_class=config.sample_cls_cnt) # criterion = XentTripletLossV2(margin=0.04, triplet_selector=RandomNegativeTripletSelectorV2(margin=0.04), # each_cls_cnt=config.each_cls_cnt, n_class=config.sample_cls_cnt) # criterion = XentGroupTripletLossV2(margin=0.8, triplet_selector=AllTripletSelector(margin=0.8), # each_cls_cnt=config.each_cls_cnt, n_class=config.sample_cls_cnt) else: raise KeyError("Unsupported loss: {}".format(config.loss_type)) optimizer = init_optim(config.optim, model.parameters(), config.lr, config.weight_decay) scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=config.stepsize, gamma=config.gamma) if config.resume is not None: if check_isfile(config.resume): checkpoint = torch.load(config.resume) pretrain_dict = checkpoint['state_dict'] model_dict = model.state_dict() pretrain_dict = { k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size() } model_dict.update(pretrain_dict) model.load_state_dict(model_dict) config.start_epoch = checkpoint['epoch'] rank1 = checkpoint['rank1'] if 'mAP' in checkpoint: mAP = checkpoint['mAP'] else: mAP = 0 print("Loaded checkpoint from '{}'".format(config.resume)) print("- start_epoch: {}\n- rank1: {}\n- mAP: {}".format( config.start_epoch, rank1, mAP)) if use_gpu: model = nn.DataParallel(model).cuda() if config.evaluate: print("Evaluate only") test_model(model, queryloader, galleryloader, train_query_loader, train_gallery_loader, use_gpu, config.test_batch, config.loss_type, config.euclidean_distance_loss) return start_time = time.time() train_time = 0 best_rank1 = -np.inf best_map = 0 best_epoch = 0 for epoch in range(config.start_epoch, config.max_epoch): print("==> Start training") start_train_time = time.time() scheduler.step() print('epoch:', epoch, 'lr:', scheduler.get_lr()) train(epoch, model, criterion, optimizer, trainloader, config.loss_type, config.print_freq) train_time += round(time.time() - start_train_time) if epoch >= config.start_eval and config.eval_step > 0 and epoch % config.eval_step == 0 \ or epoch == config.max_epoch: print("==> Test") rank1, mAP = test_model(model, queryloader, galleryloader, train_query_loader, train_gallery_loader, use_gpu, config.test_batch, config.loss_type, config.euclidean_distance_loss) is_best = rank1 > best_rank1 if is_best: best_rank1 = rank1 best_map = mAP best_epoch = epoch + 1 if use_gpu: state_dict = model.module.state_dict() else: state_dict = model.state_dict() save_checkpoint( { 'state_dict': state_dict, 'rank1': rank1, 'mAP': mAP, 'epoch': epoch + 1, }, is_best, use_gpu_suo=False, fpath=osp.join( config.save_dir, 'checkpoint_ep' + str(epoch + 1) + config.checkpoint_suffix + '.pth.tar')) print("==> Best Rank-1 {:.2%}, mAP {:.2%}, achieved at epoch {}".format( best_rank1, best_map, best_epoch)) elapsed = round(time.time() - start_time) elapsed = str(datetime.timedelta(seconds=elapsed)) train_time = str(datetime.timedelta(seconds=train_time)) print( "Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.". format(elapsed, train_time))
import torch from torch.utils.data import DataLoader import data_manager import transforms as T from data_manager.dataset_loader import ImageDatasetWGL, ImageDatasetWCL # dataset = 'vehicleid' # dataset = 'veri776wgl' dataset = 'veri776wcl' data_root = '/home/gysj/pytorch-workspace/pytorch-study/data' batch_size = 1 print("Initializing dataset {}".format(dataset)) dataset = data_manager.init_imgreid_dataset(name=dataset, root=data_root) # mean_std = scipy.io.loadmat(osp.join(data_root, 'data_mean_std/veri776_train_image_mean_std.mat')) mean_std = scipy.io.loadmat( osp.join(data_root, 'data_mean_std/veri776wcl_train_image_mean_std.mat')) # data_mean = mean_std['mean'][0].astype(np.float64) # data_std = mean_std['std'][0].astype(np.float64) data_mean = mean_std['mean'][0].astype(np.float32) data_std = mean_std['std'][0].astype(np.float32) transform_test = T.Compose([ # T.Resize((100, 100)), # T.ToTensor(), T.Normalize(mean=data_mean, std=data_std), ])