예제 #1
0
파일: run.py 프로젝트: crystal22/ConvMF
    min_rating = args.min_rating
    max_length = args.max_length_document
    max_df = args.max_df
    vocab_size = args.vocab_size
    split_ratio = args.split_ratio

    print("=================================Preprocess Option Setting=================================")
    print("\tsaving preprocessed aux path - %s" % aux_path)
    print("\tsaving preprocessed data path - %s" % data_path)
    print("\trating data path - %s" % path_rating)
    print("\tdocument data path - %s" % path_itemtext)
    print("\tmin_rating: %d\n\tmax_length_document: %d\n\tmax_df: %.1f\n\tvocab_size: %d\n\tsplit_ratio: %.1f" \
          % (min_rating, max_length, max_df, vocab_size, split_ratio))
    print("===========================================================================================")

    R, D_all = data_factory.preprocess(
        path_rating, path_itemtext, min_rating, max_length, max_df, vocab_size)
    data_factory.save(aux_path, R, D_all)
    data_factory.generate_train_valid_test_file_from_R(
        data_path, R, split_ratio)
else:
    res_dir = args.res_dir
    emb_dim = args.emb_dim
    pretrain_w2v = args.pretrain_w2v
    dimension = args.dimension
    lambda_u = args.lambda_u
    lambda_v = args.lambda_v
    max_iter = args.max_iter
    num_kernel_per_ws = args.num_kernel_per_ws
    give_item_weight = args.give_item_weight

    if res_dir is None:
예제 #2
0
파일: run.py 프로젝트: wcnet1/ConvMF
    min_rating = args.min_rating
    max_length = args.max_length_document
    max_df = args.max_df
    vocab_size = args.vocab_size
    split_ratio = args.split_ratio

    print "=================================Preprocess Option Setting================================="
    print "\tsaving preprocessed aux path - %s" % aux_path
    print "\tsaving preprocessed data path - %s" % data_path
    print "\trating data path - %s" % path_rating
    print "\tdocument data path - %s" % path_itemtext
    print "\tmin_rating: %d\n\tmax_length_document: %d\n\tmax_df: %.1f\n\tvocab_size: %d\n\tsplit_ratio: %.1f" \
        % (min_rating, max_length, max_df, vocab_size, split_ratio)
    print "==========================================================================================="

    R, D_all = data_factory.preprocess(
        path_rating, path_itemtext, min_rating, max_length, max_df, vocab_size)
    data_factory.save(aux_path, R, D_all)
    data_factory.generate_train_valid_test_file_from_R(
        data_path, R, split_ratio)
else:
    res_dir = args.res_dir
    emb_dim = args.emb_dim
    pretrain_w2v = args.pretrain_w2v
    dimension = args.dimension
    lambda_u = args.lambda_u
    lambda_v = args.lambda_v
    max_iter = args.max_iter
    num_kernel_per_ws = args.num_kernel_per_ws
    give_item_weight = args.give_item_weight

    if res_dir is None:
예제 #3
0
    max_df = args.max_df
    vocab_size = args.vocab_size
    split_ratio = args.split_ratio

    print "=================================Preprocess Option Setting================================="
    print "\tsaving preprocessed aux path - %s" % aux_path
    print "\tsaving preprocessed data path - %s" % data_path
    print "\trating data path - %s" % path_rating
    print "\tdocument data path - %s" % path_itemtext #Plot.idmap
    print "\tmin_rating: %d\n\tmax_length_document: %d\n\tmax_df: %.1f\n\tvocab_size: %d\n\tsplit_ratio: %.1f" \
        % (min_rating, max_length, max_df, vocab_size, split_ratio)
    print "==========================================================================================="
    


    R, D_all=data_factory.preprocess(
        path_rating, path_itemtext, min_rating, max_length, max_df, vocab_size,path_user_review,path_movie_review,path_user_info)
    data_factory.save(aux_path, R, D_all,U_all,V_all)
    data_factory.generate_train_valid_test_file_from_R(
        data_path, R, split_ratio)
else:
    res_dir = args.res_dir
    emb_dim = args.emb_dim
    pretrain_w2v = args.pretrain_w2v
    dimension = args.dimension
    lambda_u = args.lambda_u
    lambda_v = args.lambda_v
    lambda_p=args.lambda_p
    lambda_q=args.lambda_q
    max_length = args.max_length_document

    max_iter = args.max_iter
예제 #4
0
data_factory = Data_Factory()

if do_preprocess:
    path_rating = args.raw_rating_data_path
    min_rating = args.min_rating
    split_ratio = args.split_ratio

    print "=================================Preprocess Option Setting================================="
    print "\tsaving preprocessed aux path - %s" % aux_path
    print "\tsaving preprocessed data path - %s" % data_path
    print "\trating data path - %s" % path_rating
    print "\tmin_rating: %d\n\t split_ratio: %.1f" % (min_rating, split_ratio)
    print "==========================================================================================="

    R = data_factory.preprocess(path_rating, min_rating)
    data_factory.save(aux_path, R)
    data_factory.generate_train_valid_test_file_from_R(data_path, R,
                                                       split_ratio)
else:
    methods = args.flag
    dimension = args.dimension
    lambda_u = args.lambda_u
    lambda_v = args.lambda_v
    lambda_p = args.lambda_p
    lambda_q = args.lambda_q

    max_iter = args.max_iter
    momentum_flag = args.momentum_flag

    if lambda_u is None: