'speaker_name_width')) max_speaker_name_width = max(corp_speaker_name_width, speaker_name_width) corpora.append([ config.get("corpus" + str(cur_corpus_id), "location"), config.get("corpus" + str(cur_corpus_id), "prefix"), config.get("corpus" + str(cur_corpus_id), "word_suffix"), corp_speaker_name_width ]) cur_corpus_id += 1 if len(corpora) == 0: sys.exit("No Corpora Found!") data_manipulation.import_dictionaries(dicts) data_manipulation.import_corpora(corpora, max_speaker_name_width) mkmono0_led = 'config/mkmono0.led' mkmono1_led = 'config/mkmono1.led' # Make phone transcriptions if not os.path.exists(mkmono0_led): sys.exit("Not Found: " + mkmono0_led) if not os.path.exists(mkmono1_led): sys.exit("Not Found: " + mkmono1_led) if os.path.isdir('files'): shutil.rmtree('files') os.mkdir('files') excluded = [] if config.getint('corpora', 'skip_dict_lookup') == 1: shutil.copyfile('corpora/words.mlf', 'files/words.mlf') else: excluded = data_manipulation.prune_transcriptions(
parser.add_option('-q', '--queue', dest="queue", help="Fix the queue where things are running in", default="") options, configs = parser.parse_args() if len(options.recognition_dir) == 0: dirs_done = [] if len(options.dirs_done) > 0: dirs_done = options.dirs_done.split(',') experiments, model = parse_config(configs) model.make_reference() if model.configuration['dict'] is not None: data_manipulation.import_dictionaries([(model.configuration['dict'], '', '')]) model.configuration['dict_hdecode'] = os.getcwd() + '/dictionary/dict.hdecode' model.configuration['dict_hvite'] = os.getcwd() + '/dictionary/dict' for exp in experiments.keys(): if exp in dirs_done: experiments[exp].done = True experiments[exp].launch_options = vars(options) run_experiments(experiments) else: experiments,_ = parse_config([options.recognition_dir + '/config']) if len(experiments) != 1: sys.exit("Expected exactly one experiment! (found %s)" % ', '.join(experiments.keys())) htk.num_tasks = options.num_tasks htk.default_HERest_pruning = ['300.0', '500.0', '2000.0'] job_runner.default_options["verbosity"] = 1
if current_step >= options.step: logger.info("Start step: %d (%s)" % (current_step, 'Making reference trn')) data_manipulation.mlf_to_trn(words_mlf, 'reference.trn', speaker_name_width, ref_del_char) dicts = [] cur_dict_id = 1 while config.has_option("dict"+str(cur_dict_id), "location"): dicts.append([config.get("dict"+str(cur_dict_id), "location"), config.get("dict"+str(cur_dict_id), "prefix"), config.get("dict"+str(cur_dict_id), "word_suffix")]) cur_dict_id += 1 if len(dicts) > 0: data_manipulation.import_dictionaries(dicts) dict = 'dictionary/dict' dict_hdecode = 'dictionary/dict.hdecode' baseline_dir = 'baseline' baseline_lat_dir = baseline_dir + '/lattices.htk' baseline_lat_dir_rescored = baseline_dir + '/lattices.rescored' baseline_pass1_mlf = baseline_dir + '/pass1.mlf' baseline_pass2_mlf = baseline_dir + '/pass2.mlf' if 'baseline' in experiments: pass1_trn = baseline_dir + '/pass1.trn' pass2_trn = baseline_dir + '/pass2.trn'
dest="queue", help="Fix the queue where things are running in", default="") options, configs = parser.parse_args() if len(options.recognition_dir) == 0: dirs_done = [] if len(options.dirs_done) > 0: dirs_done = options.dirs_done.split(',') experiments, model = parse_config(configs) model.make_reference() if model.configuration['dict'] is not None: data_manipulation.import_dictionaries([ (model.configuration['dict'], '', '') ]) model.configuration['dict_hdecode'] = os.getcwd( ) + '/dictionary/dict.hdecode' model.configuration['dict_hvite'] = os.getcwd( ) + '/dictionary/dict' for exp in experiments.keys(): if exp in dirs_done: experiments[exp].done = True experiments[exp].launch_options = vars(options) run_experiments(experiments) else: experiments, _ = parse_config([options.recognition_dir + '/config']) if len(experiments) != 1: sys.exit("Expected exactly one experiment! (found %s)" % ', '.join(experiments.keys()))