def preprocess(self): (self.X_train, self.X_cv, self.y_train, self.y_cv) = dm.split_train_test(features=self.features, targets=self.targets, test_size=0.1) self.X_test = self.testLoanData.drop(['loan_status', 'days_to_zero_dollars', 'id'], 1).values (self.X_train, self.X_cv) = dm.standardize_samples(self.X_train, self.X_cv) (self.X_train, self.X_cv) = dm.scale_samples_to_range(self.X_train, self.X_cv) (self.X_test, _) = dm.standardize_samples(self.X_test, self.X_test) (self.X_test, _) = dm.scale_samples_to_range(self.X_test, self.X_test)
def define_x_test(self): #self.X_test = self.listedLoanData.drop(['id'], 1).values self.X_test = self.listedLoanData.drop(['id'], 1).astype(float).values (self.X_test, _) = dm.standardize_samples(self.X_test, self.X_test) (self.X_test, _) = dm.scale_samples_to_range(self.X_test, self.X_test)