예제 #1
0
    def test_readwriteblockvisibility(self):
        self.vis = create_blockvisibility(
            self.lowcore,
            self.times,
            self.frequency,
            channel_bandwidth=self.channel_bandwidth,
            phasecentre=self.phasecentre,
            polarisation_frame=PolarisationFrame("linear"),
            weight=1.0)
        self.vis = predict_skycomponent_visibility(self.vis, self.comp)
        export_blockvisibility_to_hdf5(
            self.vis,
            '%s/test_data_model_helpers_blockvisibility.hdf' % self.dir)
        newvis = import_blockvisibility_from_hdf5(
            '%s/test_data_model_helpers_blockvisibility.hdf' % self.dir)

        for key in self.vis.data.dtype.fields:
            assert numpy.max(
                numpy.abs(newvis.data[key] - self.vis.data[key])) < 1e-15

        assert numpy.array_equal(newvis.frequency, self.vis.frequency)
        assert newvis.data.shape == self.vis.data.shape
        assert numpy.max(numpy.abs(self.vis.vis - newvis.vis)) < 1e-15
        assert numpy.max(numpy.abs(self.vis.uvw - newvis.uvw)) < 1e-15
        assert numpy.abs(newvis.configuration.location.x.value -
                         self.vis.configuration.location.x.value) < 1e-15
        assert numpy.abs(newvis.configuration.location.y.value -
                         self.vis.configuration.location.y.value) < 1e-15
        assert numpy.abs(newvis.configuration.location.z.value -
                         self.vis.configuration.location.z.value) < 1e-15
        assert numpy.max(
            numpy.abs(newvis.configuration.xyz -
                      self.vis.configuration.xyz)) < 1e-15
        level=logging.INFO)


if __name__ == '__main__':
    pp = pprint.PrettyPrinter()

    log = logging.getLogger()
    logging.info("Starting ical-pipeline")

    arlexecute.set_client(get_dask_Client())
    arlexecute.run(init_logging)

    import pickle

    # Load data from previous simulation
    vislist = import_blockvisibility_from_hdf5('gleam_simulation_vislist.hdf')

    print(vislist[0])

    cellsize = 0.001
    npixel = 1024
    pol_frame = PolarisationFrame("stokesI")

    model_list = [
        arlexecute.execute(create_image_from_visibility)(
            v, npixel=1024, cellsize=cellsize, polarisation_frame=pol_frame)
        for v in vislist
    ]

    controls = create_calibration_controls()
def main():
    """Run the workflow."""
    init_logging()

    LOG.info("Starting imaging-pipeline")

    # Read parameters
    PARFILE = 'parameters.json'
    if len(sys.argv) > 1:
       PARFILE = sys.argv[1]
    LOG.info("JSON parameter file = %s", PARFILE)
    try: 	
       with open(PARFILE, "r") as par_file:
             jspar = json.load(par_file)       
    except AssertionError as error:
       LOG.critical('ERROR %s', error)
       return

    # We will use dask
    arlexecute.set_client(get_dask_Client())
    arlexecute.run(init_logging)

    # Import visibility list from HDF5 file
    vis_list = import_blockvisibility_from_hdf5(
        '%s/%s' % (RESULTS_DIR, jspar["files"]["vis_list"]))

    # Now read the BlockVisibilities constructed using a model drawn from GLEAM
    predicted_vislist = import_blockvisibility_from_hdf5(
        '%s/%s' % (RESULTS_DIR, jspar["files"]["predicted_vis_list"]))
    corrupted_vislist = import_blockvisibility_from_hdf5(
        '%s/%s' % (RESULTS_DIR, jspar["files"]["corrupted_vis_list"]))

# Reproduce parameters from the visibility data
    ntimes = vis_list[0].nvis

    phasecentre = vis_list[0].phasecentre
    print(phasecentre)
    polframe = vis_list[0].polarisation_frame.type
    LOG.info("Polarisation Frame of vis_list: %s", polframe)

    wprojection_planes = jspar["advice"]["wprojection_planes"]
    guard_band_image   = jspar["advice"]["guard_band_image"]
    delA               = jspar["advice"]["delA"]
    advice_low = advise_wide_field(vis_list[0], guard_band_image=guard_band_image,
                                   delA=delA,
                                   wprojection_planes=wprojection_planes)
    advice_high = advise_wide_field(vis_list[-1], guard_band_image=guard_band_image,
                                    delA=delA,
                                    wprojection_planes=wprojection_planes)

    vis_slices = advice_low['vis_slices']
    npixel = advice_high['npixels2']
    cellsize = min(advice_low['cellsize'], advice_high['cellsize'])
    
# Recovering frequencies
    fstart = vis_list[0].frequency
    fend = vis_list[-1].frequency
    num_freq_win = len(vis_list)
    frequency = numpy.linspace(fstart, fend, num_freq_win)

# Recovering bandwidths
    channel_bandwidth = numpy.array(num_freq_win * [vis_list[1].frequency - vis_list[0].frequency])
    
    # Get the LSM. This is currently blank.
    model_list = [
        arlexecute.execute(create_image_from_visibility)(
            vis_list[f],
            npixel=npixel,
            frequency=[frequency[f]],
            channel_bandwidth=[channel_bandwidth[f]],
            cellsize=cellsize,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame(polframe))
        for f, freq in enumerate(frequency)
    ]
    # future_predicted_vislist = arlexecute.scatter(predicted_vislist)

    # Create and execute graphs to make the dirty image and PSF
    # LOG.info('About to run invert to get dirty image')
    # dirty_list = invert_component(future_predicted_vislist, model_list,
    #                               context='wstack',
    #                               vis_slices=vis_slices, dopsf=False)
    # dirty_list = arlexecute.compute(dirty_list, sync=True)

    # LOG.info('About to run invert to get PSF')
    # psf_list = invert_component(future_predicted_vislist, model_list,
    #                             context='wstack',
    #                             vis_slices=vis_slices, dopsf=True)
    # psf_list = arlexecute.compute(psf_list, sync=True)

    # Now deconvolve using msclean
    # LOG.info('About to run deconvolve')
    # deconvolve_list, _ = deconvolve_component(
    #     dirty_list, psf_list,
    #     model_imagelist=model_list,
    #     deconvolve_facets=8,
    #     deconvolve_overlap=16,
    #     deconvolve_taper='tukey',
    #     scales=[0, 3, 10],
    #     algorithm='msclean',
    #     niter=1000,
    #     fractional_threshold=0.1,
    #     threshold=0.1,
    #     gain=0.1,
    #     psf_support=64)
    # deconvolved = arlexecute.compute(deconvolve_list, sync=True)

    LOG.info('About to run continuum imaging')
    continuum_imaging_list = continuum_imaging_arlexecute(
        predicted_vislist,
        model_imagelist		= model_list,
        context			= jspar["processing"]["continuum_imaging"]["context"] , #'wstack',
        vis_slices		= vis_slices,
        scales			= jspar["processing"]["continuum_imaging"]["scales"],             #[0, 3, 10],
        algorithm		= jspar["processing"]["continuum_imaging"]["algorithm"],          #'mmclean',
        nmoment			= jspar["processing"]["continuum_imaging"]["nmoment"],            #3,
        niter			= jspar["processing"]["continuum_imaging"]["niter"],		  #1000,
        fractional_threshold	= jspar["processing"]["continuum_imaging"]["fractional_threshold"], #0.1,
        threshold		= jspar["processing"]["continuum_imaging"]["threshold"], 	  #0.1,
        nmajor			= jspar["processing"]["continuum_imaging"]["nmajor"], 		  #5,
        gain			= jspar["processing"]["continuum_imaging"]["gain"],               #0.25,
        deconvolve_facets	= jspar["processing"]["continuum_imaging"]["deconvolve_facets"],  #8,
        deconvolve_overlap	= jspar["processing"]["continuum_imaging"]["deconvolve_overlap"], #16,
        deconvolve_taper	= jspar["processing"]["continuum_imaging"]["deconvolve_taper"],   #'tukey',
        psf_support		= jspar["processing"]["continuum_imaging"]["psf_support"] )        #64)
    result = arlexecute.compute(continuum_imaging_list, sync=True)
    deconvolved = result[0][0]
    residual = result[1][0]
    restored = result[2][0]

    print(qa_image(deconvolved, context='Clean image - no selfcal'))
    print(qa_image(restored, context='Restored clean image - no selfcal'))
    export_image_to_fits(restored,
                         '%s/%s' % (RESULTS_DIR, jspar["files"]["continuum_imaging_restored"]))

    print(qa_image(residual[0], context='Residual clean image - no selfcal'))
    export_image_to_fits(residual[0],
                         '%s/%s' % (RESULTS_DIR, jspar["files"]["continuum_imaging_residual"]))

    controls = create_calibration_controls()

    controls['T']['first_selfcal'] = jspar["processing"]["controls"]["T"]["first_selfcal"]
    controls['G']['first_selfcal'] = jspar["processing"]["controls"]["G"]["first_selfcal"]
    controls['B']['first_selfcal'] = jspar["processing"]["controls"]["B"]["first_selfcal"]

    controls['T']['timescale'] = jspar["processing"]["controls"]["T"]["timescale"]
    controls['G']['timescale'] = jspar["processing"]["controls"]["G"]["timescale"]
    controls['B']['timescale'] = jspar["processing"]["controls"]["B"]["timescale"]

    PP.pprint(controls)

    future_corrupted_vislist = arlexecute.scatter(corrupted_vislist)
    ical_list = ical_arlexecute(future_corrupted_vislist,
        model_imagelist		= model_list,
        context			= jspar["processing"]["ical"]["context"] , 		#'wstack',
        calibration_context	= jspar["processing"]["ical"]["calibration_context"] , 	#'TG',
        controls		= controls,
        vis_slices		= ntimes,
        scales			= jspar["processing"]["ical"]["scales"],             	#[0, 3, 10],
        timeslice		= jspar["processing"]["ical"]["timeslice"],          	#'auto',
        algorithm		= jspar["processing"]["ical"]["algorithm"],          	#'mmclean',
        nmoment			= jspar["processing"]["ical"]["nmoment"],            	#3,
        niter			= jspar["processing"]["ical"]["niter"],		  	#1000,
        fractional_threshold	= jspar["processing"]["ical"]["fractional_threshold"], 	#0.1,
        threshold		= jspar["processing"]["ical"]["threshold"], 	  	#0.1,
        nmajor			= jspar["processing"]["ical"]["nmajor"], 		#5,
        gain			= jspar["processing"]["ical"]["gain"],               	#0.25,
        deconvolve_facets	= jspar["processing"]["ical"]["deconvolve_facets"],  	#8,
        deconvolve_overlap	= jspar["processing"]["ical"]["deconvolve_overlap"], 	#16,
        deconvolve_taper	= jspar["processing"]["ical"]["deconvolve_taper"],   	#'tukey',
        global_solution		= jspar["processing"]["ical"]["global_solution"],    	#False,
        do_selfcal		= jspar["processing"]["ical"]["do_selfcal"],         	#True,
        psf_support		= jspar["processing"]["ical"]["psf_support"])         	#64


    LOG.info('About to run ical')
    result = arlexecute.compute(ical_list, sync=True)
    deconvolved = result[0][0]
    residual = result[1][0]
    restored = result[2][0]

    print(qa_image(deconvolved, context='Clean image'))
    print(qa_image(restored, context='Restored clean image'))
    export_image_to_fits(restored, '%s/%s' % (RESULTS_DIR, jspar["files"]["ical_restored"]))

    print(qa_image(residual[0], context='Residual clean image'))
    export_image_to_fits(residual[0], '%s/%s' % (RESULTS_DIR, jspar["files"]["ical_residual"]))

    arlexecute.close()
예제 #4
0
def main():
    """Run the workflow."""
    init_logging()

    LOG.info("Starting imaging-pipeline")

    # Read parameters
    PARFILE = 'parameters.json'
    if len(sys.argv) > 1:
        PARFILE = sys.argv[1]
    LOG.info("JSON parameter file = %s", PARFILE)
    try:
        with open(PARFILE, "r") as par_file:
            jspar = json.load(par_file)
    except AssertionError as error:
        LOG.critical('ERROR %s', error)
        return

    # We will use dask
    arlexecute.set_client(get_dask_Client())
    arlexecute.run(init_logging)

    # Import visibility list from HDF5 file
    vis_list = import_blockvisibility_from_hdf5(
        '%s/%s' % (RESULTS_DIR, jspar["files"]["vis_list"]))

    # Now read the BlockVisibilities constructed using a model drawn from GLEAM
    predicted_vislist = import_blockvisibility_from_hdf5(
        '%s/%s' % (RESULTS_DIR, jspar["files"]["predicted_vis_list"]))
    corrupted_vislist = import_blockvisibility_from_hdf5(
        '%s/%s' % (RESULTS_DIR, jspar["files"]["corrupted_vis_list"]))

    # Reproduce parameters from the visibility data
    ntimes = vis_list[0].nvis

    phasecentre = vis_list[0].phasecentre
    print(phasecentre)
    polframe = vis_list[0].polarisation_frame.type
    LOG.info("Polarisation Frame of vis_list: %s", polframe)

    wprojection_planes = jspar["advice"]["wprojection_planes"]
    guard_band_image = jspar["advice"]["guard_band_image"]
    delA = jspar["advice"]["delA"]
    advice_low = advise_wide_field(vis_list[0],
                                   guard_band_image=guard_band_image,
                                   delA=delA,
                                   wprojection_planes=wprojection_planes)
    advice_high = advise_wide_field(vis_list[-1],
                                    guard_band_image=guard_band_image,
                                    delA=delA,
                                    wprojection_planes=wprojection_planes)

    vis_slices = advice_low['vis_slices']
    npixel = advice_high['npixels2']
    cellsize = min(advice_low['cellsize'], advice_high['cellsize'])

    # Recovering frequencies
    fstart = vis_list[0].frequency
    fend = vis_list[-1].frequency
    num_freq_win = len(vis_list)
    frequency = numpy.linspace(fstart, fend, num_freq_win)

    # Recovering bandwidths
    channel_bandwidth = numpy.array(
        num_freq_win * [vis_list[1].frequency - vis_list[0].frequency])

    # Get the LSM. This is currently blank.
    model_list = [
        arlexecute.execute(create_image_from_visibility)(
            vis_list[f],
            npixel=npixel,
            frequency=[frequency[f]],
            channel_bandwidth=[channel_bandwidth[f]],
            cellsize=cellsize,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame(polframe))
        for f, freq in enumerate(frequency)
    ]
    # future_predicted_vislist = arlexecute.scatter(predicted_vislist)

    # Create and execute graphs to make the dirty image and PSF
    # LOG.info('About to run invert to get dirty image')
    # dirty_list = invert_component(future_predicted_vislist, model_list,
    #                               context='wstack',
    #                               vis_slices=vis_slices, dopsf=False)
    # dirty_list = arlexecute.compute(dirty_list, sync=True)

    # LOG.info('About to run invert to get PSF')
    # psf_list = invert_component(future_predicted_vislist, model_list,
    #                             context='wstack',
    #                             vis_slices=vis_slices, dopsf=True)
    # psf_list = arlexecute.compute(psf_list, sync=True)

    # Now deconvolve using msclean
    # LOG.info('About to run deconvolve')
    # deconvolve_list, _ = deconvolve_component(
    #     dirty_list, psf_list,
    #     model_imagelist=model_list,
    #     deconvolve_facets=8,
    #     deconvolve_overlap=16,
    #     deconvolve_taper='tukey',
    #     scales=[0, 3, 10],
    #     algorithm='msclean',
    #     niter=1000,
    #     fractional_threshold=0.1,
    #     threshold=0.1,
    #     gain=0.1,
    #     psf_support=64)
    # deconvolved = arlexecute.compute(deconvolve_list, sync=True)

    LOG.info('About to run continuum imaging')
    continuum_imaging_list = continuum_imaging_arlexecute(
        predicted_vislist,
        model_imagelist=model_list,
        context=jspar["processing"]["continuum_imaging"]
        ["context"],  #'wstack',
        vis_slices=vis_slices,
        scales=jspar["processing"]["continuum_imaging"]
        ["scales"],  #[0, 3, 10],
        algorithm=jspar["processing"]["continuum_imaging"]
        ["algorithm"],  #'mmclean',
        nmoment=jspar["processing"]["continuum_imaging"]["nmoment"],  #3,
        niter=jspar["processing"]["continuum_imaging"]["niter"],  #1000,
        fractional_threshold=jspar["processing"]["continuum_imaging"]
        ["fractional_threshold"],  #0.1,
        threshold=jspar["processing"]["continuum_imaging"]["threshold"],  #0.1,
        nmajor=jspar["processing"]["continuum_imaging"]["nmajor"],  #5,
        gain=jspar["processing"]["continuum_imaging"]["gain"],  #0.25,
        deconvolve_facets=jspar["processing"]["continuum_imaging"]
        ["deconvolve_facets"],  #8,
        deconvolve_overlap=jspar["processing"]["continuum_imaging"]
        ["deconvolve_overlap"],  #16,
        deconvolve_taper=jspar["processing"]["continuum_imaging"]
        ["deconvolve_taper"],  #'tukey',
        psf_support=jspar["processing"]["continuum_imaging"]
        ["psf_support"])  #64)
    result = arlexecute.compute(continuum_imaging_list, sync=True)
    deconvolved = result[0][0]
    residual = result[1][0]
    restored = result[2][0]

    print(qa_image(deconvolved, context='Clean image - no selfcal'))
    print(qa_image(restored, context='Restored clean image - no selfcal'))
    export_image_to_fits(
        restored,
        '%s/%s' % (RESULTS_DIR, jspar["files"]["continuum_imaging_restored"]))

    print(qa_image(residual[0], context='Residual clean image - no selfcal'))
    export_image_to_fits(
        residual[0],
        '%s/%s' % (RESULTS_DIR, jspar["files"]["continuum_imaging_residual"]))

    controls = create_calibration_controls()

    controls['T']['first_selfcal'] = jspar["processing"]["controls"]["T"][
        "first_selfcal"]
    controls['G']['first_selfcal'] = jspar["processing"]["controls"]["G"][
        "first_selfcal"]
    controls['B']['first_selfcal'] = jspar["processing"]["controls"]["B"][
        "first_selfcal"]

    controls['T']['timescale'] = jspar["processing"]["controls"]["T"][
        "timescale"]
    controls['G']['timescale'] = jspar["processing"]["controls"]["G"][
        "timescale"]
    controls['B']['timescale'] = jspar["processing"]["controls"]["B"][
        "timescale"]

    PP.pprint(controls)

    future_corrupted_vislist = arlexecute.scatter(corrupted_vislist)
    ical_list = ical_arlexecute(
        future_corrupted_vislist,
        model_imagelist=model_list,
        context=jspar["processing"]["ical"]["context"],  #'wstack',
        calibration_context=jspar["processing"]["ical"]
        ["calibration_context"],  #'TG',
        controls=controls,
        vis_slices=ntimes,
        scales=jspar["processing"]["ical"]["scales"],  #[0, 3, 10],
        timeslice=jspar["processing"]["ical"]["timeslice"],  #'auto',
        algorithm=jspar["processing"]["ical"]["algorithm"],  #'mmclean',
        nmoment=jspar["processing"]["ical"]["nmoment"],  #3,
        niter=jspar["processing"]["ical"]["niter"],  #1000,
        fractional_threshold=jspar["processing"]["ical"]
        ["fractional_threshold"],  #0.1,
        threshold=jspar["processing"]["ical"]["threshold"],  #0.1,
        nmajor=jspar["processing"]["ical"]["nmajor"],  #5,
        gain=jspar["processing"]["ical"]["gain"],  #0.25,
        deconvolve_facets=jspar["processing"]["ical"]
        ["deconvolve_facets"],  #8,
        deconvolve_overlap=jspar["processing"]["ical"]
        ["deconvolve_overlap"],  #16,
        deconvolve_taper=jspar["processing"]["ical"]
        ["deconvolve_taper"],  #'tukey',
        global_solution=jspar["processing"]["ical"]
        ["global_solution"],  #False,
        do_selfcal=jspar["processing"]["ical"]["do_selfcal"],  #True,
        psf_support=jspar["processing"]["ical"]["psf_support"])  #64

    LOG.info('About to run ical')
    result = arlexecute.compute(ical_list, sync=True)
    deconvolved = result[0][0]
    residual = result[1][0]
    restored = result[2][0]

    print(qa_image(deconvolved, context='Clean image'))
    print(qa_image(restored, context='Restored clean image'))
    export_image_to_fits(
        restored, '%s/%s' % (RESULTS_DIR, jspar["files"]["ical_restored"]))

    print(qa_image(residual[0], context='Residual clean image'))
    export_image_to_fits(
        residual[0], '%s/%s' % (RESULTS_DIR, jspar["files"]["ical_residual"]))

    arlexecute.close()