def inputProcedData(self): filesize = int(self.frmSizeBox.text()) print "Input proced data", filesize self.fname = [str(self.txtSepFile.text())] input_data = data_proc2.load_proced_data_flag(self.fname, datalen=filesize) self.loadInputData(input_data)
dim_h = args.n_units batchsize = args.batchsize bprop_len = args.bprop_len grad_clip = 1 train_file = glob.glob(args.train_dir + "/*") s_train_file = glob.glob(args.s_train_dir + "/*") valid_file = glob.glob(args.valid_dir + "/*") test_file = glob.glob(args.test_dir + "/*") if len(train_file) == 0: print "error train folder no file!" train_data = data_proc2.load_proced_data(train_file) #(joints, speaks, annos) s_train_data = data_proc2.load_proced_data_flag( s_train_file) #(joints, speaks, annos) valid_data = data_proc2.load_proced_data(valid_file, datalen=args.datalen) test_data = data_proc2.load_proced_data(test_file, datalen=args.datalen) print("train_data:", train_data[0].shape, train_data[2].shape, train_data[2].shape) # Data set train_joints, train_speaks, train_annos = train_data[0], train_data[ 1], train_data[2] s_train_joints, s_train_speaks, s_train_annos, s_train_flags = s_train_data[ "joints"], s_train_data["speaks"], s_train_data["annos"], s_train_data[ "flags"] valid_joints, valid_speaks, valid_annos = valid_data[0], valid_data[
start = t if data[t] == 1 and data[t+1] == 0: sum_time += sum(diff_time[start:t]) return sum_time fnames = sorted(glob.glob(args.filename+"/*")) cap = ["person", "robot"] types = ["model", "control", "random", "person"] for n, fname in enumerate(fnames): input_data = data_proc2.load_proced_data_flag([fname], datalen=-1) #(1000, 2) a_data = np.abs(input_data["annos"])#[:1000] t_data = input_data["times"]#[:1000] diff_time = [] for i in range(len(t_data)-1): if i == 0: diff_time.append(0) else: diff_time.append(t_data[i+1]-t_data[i]) plt.subplot(4,1,n+1) if n < 3: barh_plot(a_data[:,0], a_data[:,1], t_data)