sess.run(tf.global_variables_initializer()) saver.restore(sess, './model/S1_model_iter-0') print("Starting training......") for i in range(total_step): imgs, labels = sess.run([imgs_batch, landmarks_batch]) sess.run(dan['S2_Optimizer'], feed_dict={x: imgs, y: labels}) if (i % auc_step == 0 or i == (total_step - 1)): runTime = time.clock() - curTime curTime = time.clock() loss_s2 = dan['S2_Cost'].eval(feed_dict={x: imgs, y: labels}) #r = dan['r'].eval(feed_dict={x:imgs,y:labels}) print("step:%s loss_s2:%.4f Running time:%.2fs" % (str(i).zfill(6), loss_s2, runTime)) if (i % auc_step == 0 or i == (total_step - 1)): imgs_test, landmarks_test = loadTfrecords_t(tfrecordsTest, 1) errors_s2 = [] for _ in range(100): imgsTest, landmarksTest = sess.run([imgs_test, landmarks_test]) pred_s2 = sess.run(dan['S2_Ret'], feed_dict={ x: imgsTest, y: landmarksTest }) error_s2 = LandmarkError(pred_s2[0], landmarksTest[0]) errors_s2.append(error_s2) AUCError(errors_s2, threshold, step=0.0001, showCurve=False) print( sess.run(dan['S2_Cost'], feed_dict={ x: imgsTest,
print("Starting training......") for i in range(total_step): imgs, labels = sess.run([imgs_batch, landmarks_batch]) sess.run(dan['s1_optimizer'], feed_dict={x: imgs, y: labels}) if (i % auc_step == 0 or i == (total_step - 1)): runTime = time.clock() - curTime curTime = time.clock() loss_s1 = dan['s1_cost'].eval(feed_dict={ x: imgs, y: labels }) #,dan['S1_isTrain']:False,dan['S2_isTrain']:False}) print("step:%s loss_s1:%.6f Running time:%.2fs" % (str(i).zfill(6), loss_s1, runTime)) if (i % auc_step == 0 or i == (total_step - 1)): imgs_test, landmarks_test = loadTfrecords_t( tfrecordsTest, batch_size) errors_s1 = [] imgsTest, landmarksTest = sess.run([imgs_test, landmarks_test]) pred_s1 = sess.run(dan['s1_landmarks'], feed_dict={ x: imgsTest, y: landmarksTest }) for i in range(batch_size): error_s1 = LandmarkError(pred_s1[i], landmarksTest[i], normalization=['diagonal']) errors_s1.append(error_s1) AUCError(errors_s1, threshold, step=0.0001, showCurve=False) print( sess.run(dan['s1_cost'],