예제 #1
0
    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465),
                             (0.2023, 0.1994, 0.2010)),
    ])

    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465),
                             (0.2023, 0.1994, 0.2010)),
    ])

    trainset = data_providers.CIFAR10(root='data',
                                      set_name='train',
                                      download=True,
                                      transform=transform_train)
    train_data = torch.utils.data.DataLoader(trainset,
                                             batch_size=100,
                                             shuffle=True,
                                             num_workers=2)

    valset = data_providers.CIFAR10(root='data',
                                    set_name='val',
                                    download=True,
                                    transform=transform_test)
    val_data = torch.utils.data.DataLoader(valset,
                                           batch_size=100,
                                           shuffle=False,
                                           num_workers=2)
예제 #2
0
#trial - no transforms
# transform_train = transforms.Compose([
#     transforms.RandomCrop(32, padding=4),
#     transforms.RandomHorizontalFlip(),
#     transforms.ToTensor(),
#     transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
# ])

# transform_test = transforms.Compose([
#     transforms.ToTensor(),
#     transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
# ])

trainset = data_providers.CIFAR10(root='CIFAR10_Data/',
                                  set_name='train',
                                  download=False,
                                  transform=transform_train)
styled = data_providers.AugmentedCIFAR10(path='CIFAR10_Data/Pickled/',
                                         transform=transform_train)

concatenated = torch.utils.data.ConcatDataset([trainset, styled])

train_data = torch.utils.data.DataLoader(concatenated,
                                         batch_size=128,
                                         shuffle=True,
                                         num_workers=4)
print('Total elements for training:', len(concatenated), len(styled))

print(styled[9][1].dtype)
print(trainset[9][1].dtype)