def setUp(self): # Saving this for if we have protected endpoints # self.superuser = User.objects.create_superuser('john', '*****@*****.**', 'johnpassword') # self.client.login(username='******', password='******') # self.user = User.objects.create(username="******") experiment = Experiment() experiment.accession_code = "GSE000" experiment.alternate_accession_code = "E-GEOD-000" experiment.title = "NONONONO" experiment.description = "Boooooourns. Wasabi." experiment.technology = "RNA-SEQ" experiment.save() experiment = Experiment() experiment.accession_code = "GSE123" experiment.title = "Hey Ho Let's Go" experiment.description = ( "This is a very exciting test experiment. Faygo soda. Blah blah blah." ) experiment.technology = "MICROARRAY" experiment.save() self.experiment = experiment experiment_annotation = ExperimentAnnotation() experiment_annotation.data = {"hello": "world", "123": 456} experiment_annotation.experiment = experiment experiment_annotation.save() # Create 26 test organisms numbered 0-25 for pagination test, so there should be 29 organisms total (with the 3 others below) for i in range(26): Organism(name=("TEST_ORGANISM_{}".format(i)), taxonomy_id=(1234 + i)).save() ailuropoda = Organism(name="AILUROPODA_MELANOLEUCA", taxonomy_id=9646, is_scientific_name=True) ailuropoda.save() self.homo_sapiens = Organism(name="HOMO_SAPIENS", taxonomy_id=9606, is_scientific_name=True) self.homo_sapiens.save() self.danio_rerio = Organism(name="DANIO_RERIO", taxonomy_id=1337, is_scientific_name=True) self.danio_rerio.save() sample = Sample() sample.title = "123" sample.accession_code = "123" sample.is_processed = True sample.organism = ailuropoda sample.save() sample = Sample() sample.title = "789" sample.accession_code = "789" sample.is_processed = True sample.organism = ailuropoda sample.save() self.sample = sample # add qn target for sample organism result = ComputationalResult() result.commands.append("create_qn_target.py") result.is_ccdl = True result.is_public = True result.processor = None result.save() cra = ComputationalResultAnnotation() cra.result = result cra.data = {"organism_id": ailuropoda.id, "is_qn": True} cra.save() ailuropoda.qn_target = result ailuropoda.save() sample_annotation = SampleAnnotation() sample_annotation.data = {"goodbye": "world", "789": 123} sample_annotation.sample = sample sample_annotation.save() original_file = OriginalFile() original_file.save() original_file_sample_association = OriginalFileSampleAssociation() original_file_sample_association.sample = sample original_file_sample_association.original_file = original_file original_file_sample_association.save() downloader_job = DownloaderJob() downloader_job.save() download_assoc = DownloaderJobOriginalFileAssociation() download_assoc.original_file = original_file download_assoc.downloader_job = downloader_job download_assoc.save() processor_job = ProcessorJob() processor_job.save() processor_assoc = ProcessorJobOriginalFileAssociation() processor_assoc.original_file = original_file processor_assoc.processor_job = processor_job processor_assoc.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample experiment_sample_association.experiment = experiment experiment_sample_association.save() experiment.num_total_samples = 1 experiment.num_processed_samples = 1 experiment.save() result = ComputationalResult() result.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() result = ComputationalResult() result.save() sra = SampleResultAssociation() sra.sample = sample sra.result = result sra.save() processor = Processor() processor.name = "Salmon Quant" processor.version = "v9.9.9" processor.docker_image = "dr_salmon" processor.environment = '{"some": "environment"}' processor.save() computational_result_short = ComputationalResult(processor=processor) computational_result_short.save() organism_index = OrganismIndex() organism_index.index_type = "TRANSCRIPTOME_SHORT" organism_index.organism = self.danio_rerio organism_index.result = computational_result_short organism_index.absolute_directory_path = ( "/home/user/data_store/salmon_tests/TRANSCRIPTOME_INDEX/SHORT") organism_index.is_public = True organism_index.s3_url = "not_blank" organism_index.save() return
def test_make_experiment_result_associations(self): """Tests that the correct associations are made. The situation we're setting up is basically this: * tximport has been run for an experiment. * It made associations between the samples in the experiment and the ComputationalResult. * It didn't make associations between the experiment itself and the ComputationalResult. * There is a second experiment that hasn't had tximport run but shares a sample with the other experiment. * This second experiment has a sample which has not yet had tximport run on it. And what we're going to test for is: * An association is created between the tximport result and the first experiment. * An association is NOT created between the tximport result and the second experiment. """ # Get an organism to set on samples: homo_sapiens = Organism.get_object_for_name("HOMO_SAPIENS", taxonomy_id=9606) # Create the tximport processor and result: processor = Processor() processor.name = "Tximport" processor.version = "v9.9.9" processor.docker_image = "dr_salmon" processor.environment = '{"some": "environment"}' processor.save() result = ComputationalResult() result.commands.append("tximport invocation") result.is_ccdl = True result.processor = processor result.save() # Create the first experiment and it's samples: processed_experiment = Experiment() processed_experiment.accession_code = "SRP12345" processed_experiment.save() processed_sample_one = Sample() processed_sample_one.accession_code = "SRX12345" processed_sample_one.title = "SRX12345" processed_sample_one.organism = homo_sapiens processed_sample_one.save() sra = SampleResultAssociation() sra.sample = processed_sample_one sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = processed_experiment esa.sample = processed_sample_one esa.save() processed_sample_two = Sample() processed_sample_two.accession_code = "SRX12346" processed_sample_two.title = "SRX12346" processed_sample_two.organism = homo_sapiens processed_sample_two.save() sra = SampleResultAssociation() sra.sample = processed_sample_two sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = processed_experiment esa.sample = processed_sample_two esa.save() # Create the second experiment and it's additional sample. unprocessed_experiment = Experiment() unprocessed_experiment.accession_code = "SRP6789" unprocessed_experiment.save() unprocessed_sample = Sample() unprocessed_sample.accession_code = "SRX6789" unprocessed_sample.title = "SRX6789" unprocessed_sample.organism = homo_sapiens unprocessed_sample.save() sra = SampleResultAssociation() sra.sample = unprocessed_sample sra.result = result sra.save() esa = ExperimentSampleAssociation() esa.experiment = unprocessed_experiment esa.sample = unprocessed_sample esa.save() esa = ExperimentSampleAssociation() esa.experiment = unprocessed_experiment esa.sample = processed_sample_two esa.save() # Run the function we're testing: make_experiment_result_associations() # Test that only one association was created and that it was # to the processed experiment: eras = ExperimentResultAssociation.objects.all() self.assertEqual(len(eras), 1) self.assertEqual(eras.first().experiment, processed_experiment)
def setup_experiment(new_version_accessions: List[str], old_version_accessions: List[str]) -> Dict: """ Create an experiment where some samples were processed with the newest version of salmon and other with an older one. """ # Create the experiment experiment_accession = "SRP095529" data_dir = "/home/user/data_store/" experiment_dir = data_dir + experiment_accession experiment = Experiment.objects.create(accession_code=experiment_accession, technology="RNA-SEQ") zebrafish = Organism.get_object_for_name("DANIO_RERIO") # Create the transcriptome processor and result: transcriptome_processor = Processor() transcriptome_processor.name = "Transcriptome" transcriptome_processor.version = "salmon 0.9.1" transcriptome_processor.docker_image = "dr_transcriptome" transcriptome_processor.environment = '{"some": "environment"}' transcriptome_processor.save() computational_result_short = ComputationalResult( processor=transcriptome_processor) computational_result_short.save() organism_index = OrganismIndex() organism_index.index_type = "TRANSCRIPTOME_SHORT" organism_index.organism = zebrafish organism_index.result = computational_result_short organism_index.absolute_directory_path = "/home/user/data_store/ZEBRAFISH_INDEX/SHORT" organism_index.salmon_version = "salmon 0.9.1" organism_index.save() comp_file = ComputedFile() # This path will not be used because we already have the files extracted. comp_file.absolute_file_path = ( "/home/user/data_store/ZEBRAFISH_INDEX/SHORT/zebrafish_short.tar.gz") comp_file.result = computational_result_short comp_file.size_in_bytes = 1337 comp_file.sha1 = "ABC" comp_file.s3_key = "key" comp_file.s3_bucket = "bucket" comp_file.save() quant_processor = Processor() quant_processor.name = "Salmon Quant" quant_processor.version = "salmon 0.9.1" quant_processor.docker_image = "dr_salmon" quant_processor.environment = '{"some": "environment"}' quant_processor.save() for accession_code in old_version_accessions: sample = Sample.objects.create( accession_code=accession_code, organism=zebrafish, source_database="SRA", technology="RNA-SEQ", platform_accession_code="IlluminaHiSeq1000", ) ExperimentSampleAssociation.objects.create(experiment=experiment, sample=sample) original_file = OriginalFile() original_file.filename = accession_code + ".SRA" original_file.source_filename = accession_code + ".SRA" original_file.save() OriginalFileSampleAssociation.objects.get_or_create( original_file=original_file, sample=sample) # Create and associate quant result and files. quant_result = ComputationalResult() quant_result.is_ccdl = True quant_result.processor = quant_processor quant_result.organism_index = organism_index # associate with OLD organism index quant_result.save() kv = ComputationalResultAnnotation() kv.data = {"index_length": "short"} kv.result = quant_result kv.is_public = True kv.save() # In prod the filename pattern will involve the timestamp # but here we're using the accession code so we can find # the archive file for the current sample. archive_filename = "result-" + accession_code + ".tar.gz" archive_file = ComputedFile() archive_file.filename = archive_filename archive_file.absolute_file_path = os.path.join(experiment_dir, archive_filename) archive_file.is_public = False archive_file.is_smashable = False archive_file.is_qc = False archive_file.result = quant_result archive_file.size_in_bytes = 12345 archive_file.save() quant_file = ComputedFile() quant_file.filename = "quant.sf" quant_file.absolute_file_path = (experiment_dir + "/quant_files/" + accession_code + "_output/quant.sf") quant_file.is_public = False quant_file.is_smashable = False quant_file.is_qc = False quant_file.result = quant_result quant_file.size_in_bytes = 12345 quant_file.s3_bucket = "bucket" quant_file.s3_key = "key" quant_file.save() SampleResultAssociation.objects.get_or_create(sample=sample, result=quant_result) # Create another OrganismIndex with a newer version of transcriptome_processor = Processor() transcriptome_processor.name = "Transcriptome" transcriptome_processor.version = "salmon 0.13.1" transcriptome_processor.docker_image = "dr_transcriptome" transcriptome_processor.environment = '{"some": "environment"}' transcriptome_processor.save() computational_result_short = ComputationalResult( processor=transcriptome_processor) computational_result_short.save() organism_index = OrganismIndex() organism_index.index_type = "TRANSCRIPTOME_SHORT" organism_index.organism = zebrafish organism_index.result = computational_result_short organism_index.absolute_directory_path = "/home/user/data_store/ZEBRAFISH_INDEX/SHORT" organism_index.salmon_version = "salmon 0.13.1" # DIFFERENT SALMON VERSION organism_index.save() comp_file = ComputedFile() # This path will not be used because we already have the files extracted. comp_file.absolute_file_path = ( "/home/user/data_store/ZEBRAFISH_INDEX/SHORT/zebrafish_short.tar.gz") comp_file.result = computational_result_short comp_file.size_in_bytes = 1337 comp_file.sha1 = "ABC" comp_file.s3_key = "key" comp_file.s3_bucket = "bucket" comp_file.save() for accession_code in new_version_accessions: sample = Sample.objects.create( accession_code=accession_code, organism=zebrafish, source_database="SRA", technology="RNA-SEQ", platform_accession_code="IlluminaHiSeq1000", ) ExperimentSampleAssociation.objects.create(experiment=experiment, sample=sample) original_file = OriginalFile() original_file.filename = accession_code + ".SRA" original_file.source_filename = accession_code + ".SRA" original_file.save() OriginalFileSampleAssociation.objects.get_or_create( original_file=original_file, sample=sample) # Create and associate quant result and files. quant_result = ComputationalResult() quant_result.is_ccdl = True quant_result.processor = quant_processor quant_result.organism_index = organism_index # NEWER VERSION quant_result.save() kv = ComputationalResultAnnotation() kv.data = {"index_length": "short"} kv.result = quant_result kv.is_public = True kv.save() # In prod the filename pattern will involve the timestamp # but here we're using the accession code so we can find # the archive file for the current sample. archive_filename = "result-" + accession_code + ".tar.gz" archive_file = ComputedFile() archive_file.filename = archive_filename archive_file.absolute_file_path = os.path.join(experiment_dir, archive_filename) archive_file.is_public = False archive_file.is_smashable = False archive_file.is_qc = False archive_file.result = quant_result archive_file.size_in_bytes = 12345 archive_file.save() quant_file = ComputedFile() quant_file.filename = "quant.sf" quant_file.absolute_file_path = (experiment_dir + "/quant_files/" + accession_code + "_output/quant.sf") quant_file.is_public = False quant_file.is_smashable = False quant_file.is_qc = False quant_file.result = quant_result quant_file.size_in_bytes = 12345 quant_file.s3_bucket = "bucket" quant_file.s3_key = "key" quant_file.save() SampleResultAssociation.objects.get_or_create(sample=sample, result=quant_result) return experiment
def prep_tximport_at_progress_point(complete_accessions: List[str], incomplete_accessions: List[str]) -> Dict: """Create an experiment and associated objects that tximport needs to run on it. Creates a sample for each accession contained in either input list. The samples in complete_accessions will be simlulated as already having salmon quant run on them. The samples in incomplete_accessions won't. """ # Create the experiment experiment_accession = "SRP095529" data_dir = "/home/user/data_store/" experiment_dir = data_dir + experiment_accession experiment = Experiment.objects.create(accession_code=experiment_accession, technology="RNA-SEQ") zebrafish = Organism.get_object_for_name("DANIO_RERIO") ExperimentOrganismAssociation.objects.get_or_create(experiment=experiment, organism=zebrafish) # Create the transcriptome processor and result: transcriptome_processor = Processor() transcriptome_processor.name = "Transcriptome" transcriptome_processor.version = "salmon 0.13.1" transcriptome_processor.docker_image = "dr_transcriptome" transcriptome_processor.environment = '{"some": "environment"}' transcriptome_processor.save() computational_result_short = ComputationalResult( processor=transcriptome_processor) computational_result_short.save() organism_index = OrganismIndex() organism_index.index_type = "TRANSCRIPTOME_SHORT" organism_index.organism = zebrafish organism_index.result = computational_result_short organism_index.absolute_directory_path = "/home/user/data_store/ZEBRAFISH_INDEX/SHORT" organism_index.salmon_version = "salmon 0.13.1" organism_index.save() comp_file = ComputedFile() # This path will not be used because we already have the files extracted. comp_file.absolute_file_path = ( "/home/user/data_store/ZEBRAFISH_INDEX/SHORT/zebrafish_short.tar.gz") comp_file.result = computational_result_short comp_file.size_in_bytes = 1337 comp_file.sha1 = "ABC" comp_file.s3_key = "key" comp_file.s3_bucket = "bucket" comp_file.save() for accession_code in incomplete_accessions: sample = Sample.objects.create( accession_code=accession_code, organism=zebrafish, source_database="SRA", technology="RNA-SEQ", ) ExperimentSampleAssociation.objects.create(experiment=experiment, sample=sample) original_file = OriginalFile() original_file.filename = accession_code + ".SRA" original_file.source_filename = accession_code + ".SRA" original_file.save() OriginalFileSampleAssociation.objects.get_or_create( original_file=original_file, sample=sample) quant_processor = Processor() quant_processor.name = "Salmon Quant" quant_processor.version = "salmon 0.13.1" quant_processor.docker_image = "dr_salmon" quant_processor.environment = '{"some": "environment"}' quant_processor.save() tximport_processor = Processor() tximport_processor.name = "Tximport" tximport_processor.version = "salmon 0.13.1" tximport_processor.docker_image = "dr_salmon" tximport_processor.environment = '{"some": "environment"}' tximport_processor.save() # Create the already processed samples along with their # ComputationalResults and ComputedFiles. They don't need # original files for this test because we aren't going to run # salmon quant on them. for accession_code in complete_accessions: sample = Sample.objects.create( accession_code=accession_code, organism=zebrafish, source_database="SRA", technology="RNA-SEQ", ) ExperimentSampleAssociation.objects.create(experiment=experiment, sample=sample) original_file = OriginalFile() original_file.filename = accession_code + ".SRA" original_file.source_filename = accession_code + ".SRA" original_file.save() OriginalFileSampleAssociation.objects.get_or_create( original_file=original_file, sample=sample) # Create and associate quant result and files. quant_result = ComputationalResult() quant_result.is_ccdl = True quant_result.processor = quant_processor quant_result.organism_index = organism_index quant_result.save() kv = ComputationalResultAnnotation() kv.data = {"index_length": "short"} kv.result = quant_result kv.is_public = True kv.save() # In prod the filename pattern will involve the timestamp # but here we're using the accession code so we can find # the archive file for the current sample. archive_filename = "result-" + accession_code + ".tar.gz" archive_file = ComputedFile() archive_file.filename = archive_filename archive_file.absolute_file_path = os.path.join(experiment_dir, archive_filename) archive_file.is_public = False archive_file.is_smashable = False archive_file.is_qc = False archive_file.result = quant_result archive_file.size_in_bytes = 12345 archive_file.save() quant_file = ComputedFile() quant_file.filename = "quant.sf" quant_file.absolute_file_path = (experiment_dir + "/quant_files/" + accession_code + "_output/quant.sf") quant_file.is_public = False quant_file.is_smashable = False quant_file.is_qc = False quant_file.result = quant_result quant_file.size_in_bytes = 12345 quant_file.s3_bucket = "bucket" quant_file.s3_key = "key" quant_file.save() sample.most_recent_quant_file = quant_file sample.save() SampleResultAssociation.objects.get_or_create(sample=sample, result=quant_result)