from video_capture import video_capture from renderer import renderer from openface_handler import openface_handler from data_saver import data_saver video_capture = video_capture() openface_handler = openface_handler() data_saver = data_saver() renderer = renderer(video_capture, openface_handler, data_saver) #renderer.show_frames() tick = 1 # every ten seconds! renderer.runopenface_on_frames_everytick(show=True, tick=tick) #renderer.runopenface_on_frames_nowaiting(show=True) #renderer.record_frames() video_capture.destroy()
trafic_G_lower = [93, 181, 235] rafic_G_upper = [178, 241, 255] trafic_G = track_bar('rafic_G', False, trafic_G_lower, rafic_G_upper) cap = cv2.VideoCapture(0) cap1 = cv2.VideoCapture(1) cap.set(3, 320) cap.set(4, 240) cap1.set(3, 320) cap1.set(4, 240) pub = rospy.Publisher('/forwardVision', forwardVision, queue_size=10) rospy.init_node('forward_vision') msg = forwardVision() dat = data_saver() #========================================================================================# while (cap.isOpened() and cap1.isOpened()): ret, frame = cap.read() ret, frame1 = cap1.read() #================================ hsv ===================================================# hsv1 = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) hsv2 = cv2.cvtColor(frame1, cv2.COLOR_BGR2HSV) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.rectangle(frame, (0, 275), (600, 300), (0, 255, 0), 2) roi1 = hsv1[150:240, 0:320] roi1_trafic = hsv1[50:240, 160:320]
#algo_clustering = 'k-means' #algo_clustering = 'agglomerative' algo_clustering = 'spectral' ########################################################################### # Preparing data for clustering ########################################################################### training_data = data_loader(file_name, features_names) logging.info('Data has been prepared') ########################################################################### # Training the model and get the clusters ########################################################################### results, model = clustering_algorithms(algo_clustering, training_data, nb_clusters, random_state=seed, affinity='nearest_neighbors') logging.info('Training has been done') ########################################################################### # Saving results # csv file containing data and a new column : clusters # a PNG of initial data and new clusters ########################################################################### features_names.append("clusters") data_clusters = pd.DataFrame(results, columns=features_names) data_saver(file_name, data_clusters, algo_clustering) logging.info('Results saved')
listener_1 = Listener(address1) data_conn = listener_1.accept() print("connected to data stream") print("Waiting for real time plotter") address2 = ('localhost', plotter_port) listener_2 = Listener(address2) plotter_conn = listener_2.accept() print("Connected to plotter") """ Create data saver object """ print("Creating data saver object") current_time = strftime(f"%b%d_%H%M", localtime()) current_dir = current_time + "test" saver = data_saver(current_dir, program_state) print(f"Current time is {current_time}. Successfully created saver") program_mode = "DEV_MODE" """ Initialize pygame and the other visual programs """ pygame.init() if pygame.mixer and not pygame.mixer.get_init(): print('Warning, no sound') pygame.mixer = None quit() width, height = 600, 600 screen = pygame.display.set_mode((width, height))