def run_method_2(): # Replicates the method outlined in the Google Doc source = data_source.DataSource() T = 100 K = 10 zero_vec = np.zeros(10) ws = [zero_vec, zero_vec] gs = [zero_vec] for t in range(T): w_cur = ws[-1] w_prev = ws[-2] g_prev = gs[-1] # Generate K random machines to perform the modified DSVRG updates inner_results = [ machine.Machine(source, data_count=100).execute_modified_DSVRG( w_cur, w_prev, g_prev) for _ in range(K) ] w_next = np.mean([w for (w, _) in inner_results]) g_cur = np.mean([g for (_, g) in inner_results]) ws.append(w_next) gs.append(g_cur) pass
def loadData(self): r = data.DataSource() def update(r): print r r.loadData(update, const.COLUMN_ID, const.COLUMN_DATE, const.COLUMN_VIDEOSID, videoSid = 'tvn8opw0c3pq')
lw=2) for cen in centroids ]) tags = ['x', 'y'] + [title for (_, title) in hm.images] show_many_images( imgs, tags, patchess, ) c = tf.ConfigProto() c.gpu_options.allow_growth = True sess = tf.Session(config=c) keras.backend.tensorflow_backend.set_session(sess) ds = data_source.DataSource(PREFIX) m = model.Model(os.path.join(PREFIX, sys.argv[1]), ds) # print(m.eval_accuracies()) for i, name in enumerate(TEST_NAMES): # exit() # exit() # for name, x, y, i in zip(ds.names, ds.xtrain, ds.ytrain, range(100000)): # n = ds.names # np.random.shuffle(n) # for i, name in enumerate(n): # for i, name in enumerate([ # '17-10-24-23-10-39_blue-thunderbluff-courtyard-scroll0_marilyn', # '17-10-24-23-28-52_blue-darnassus-auctionhouse-scroll0_gina', # '17-10-24-23-36-13_blue-darnassus-temple-scroll0_kelly-occlusion', # '17-10-28-21-24-48_red-stonetalon-sunrock-scroll10_anna',
self.model.fit(train_data, label_data) def predict(self, test_data, test_label): expected = test_label predicted = self.model.predict(test_data) predicted_prob = self.model.predict_proba(test_data) print "predicted_prob" print predicted_prob print "===========================" print(metrics.classification_report(expected, predicted)) #print(metrics.confusion_matrix(expected, predicted)) print(metrics.roc_auc_score(expected, predicted)) print self.model.coef_[0] if __name__ == "__main__": file_name = "ccf_offline_stage1_train.csv" data = data_source.DataSource() (features, labels) = data.load_normalize_data(file_name) print features print labels #sys.exit() (X_train, X_test, y_train, y_test) = cross_validation.train_test_split(features, labels, test_size=0.3) model = Model() model.train(X_train, y_train) model.predict(X_test, y_test)