def test_creating_3_by_3_matrix(self): data = [[-3, 5, 0], [1, -2, -7], [0, 1, 1]] matrix = Matrix(data) assert matrix.at(0, 0) == -3 assert matrix.at(1, 1) == -2 assert matrix.at(2, 1) == 1
def test_transposing_matrix(self): m = Matrix([[0, 9, 3, 0], [9, 8, 0, 8], [1, 8, 5, 3], [0, 0, 5, 8]]) result = m.transpose() assert result == Matrix([[0, 9, 1, 0], [9, 8, 8, 0], [3, 0, 5, 5], [0, 8, 3, 8]])
def test_transposing_identity_matrix_results_in_identity_matrix(self): identity_matrix = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) result = identity_matrix.transpose() assert result == identity_matrix
def test_calculating_determinant_of_3_by_3_matrix(self): matrix = Matrix([[1, 2, 6], [-5, 8, -4], [2, 6, 4]]) assert matrix.cofactor(0, 0) == 56 assert matrix.cofactor(0, 1) == 12 assert matrix.cofactor(0, 2) == -46 assert matrix.determinant() == -196
def test_submatrix_of_4_by_4_matrix_is_3_by_3_matrix(self): matrix = Matrix([[-6, 1, 1, 6], [-8, 5, 8, 6], [-1, 0, 8, 2], [-7, 1, -1, 1]]) result = matrix.submatrix(2, 1) assert result == Matrix([[-6, 1, 6], [-8, 8, 6], [-7, -1, 1]])
def test_equality_with_equal_data_sets(self): data1 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 8, 7, 6], [5, 4, 3, 2]] data2 = data1[::] m1 = Matrix(data1) m2 = Matrix(data2) assert m1 == m2
def test_matrix_mul_by_identity_matrix(self): m = Matrix([[0, 1, 2, 4], [1, 2, 4, 8], [2, 4, 8, 16], [4, 8, 16, 32]]) identity_matrix = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) result = m * identity_matrix assert result == m
def test_not_equal_with_non_equal_data_sets(self): data1 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 8, 7, 6], [5, 4, 3, 2]] data2 = [[3, 2, 3, 4], [4, 6, 7, 8], [9, 8, 7, 6], [5, 4, 3, 2]] m1 = Matrix(data1) m2 = Matrix(data2) assert m1 != m2
def test_creating_2_by_2_matrix(self): data = [[-3, 5], [1, -2]] matrix = Matrix(data) assert matrix.at(0, 0) == -3 assert matrix.at(0, 1) == 5 assert matrix.at(1, 0) == 1 assert matrix.at(1, 1) == -2
def test_matrix_multiplication(self): m1 = Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 8, 7, 6], [5, 4, 3, 2]]) m2 = Matrix([[-2, 1, 2, 3], [3, 2, 1, -1], [4, 3, 6, 5], [1, 2, 7, 8]]) result = m1 * m2 assert result == Matrix([[20, 22, 50, 48], [44, 54, 114, 108], [40, 58, 110, 102], [16, 26, 46, 42]])
def test_caclculating_minor_of_3_by_3_matrix(self): matrix = Matrix([[3, 5, 0], [2, -1, -7], [6, -1, 5]]) sub_matrix = matrix.submatrix(1, 0) determinant = sub_matrix.determinant() minor = matrix.minor(1, 0) assert determinant == 25 assert determinant == minor
def test_calculating_determinant_of_4_by_4_matrix(self): matrix = Matrix([[-2, -8, 3, 5], [-3, 1, 7, 3], [1, 2, -9, 6], [-6, 7, 7, -9]]) assert matrix.cofactor(0, 0) == 690 assert matrix.cofactor(0, 1) == 447 assert matrix.cofactor(0, 2) == 210 assert matrix.cofactor(0, 3) == 51 assert matrix.determinant() == -4071
def test_inversion_reverts_correctly(self): m1 = Matrix([[3, -9, 7, 3], [3, -8, 2, -9], [-4, 4, 4, 1], [-6, 5, -1, 1]]) m2 = Matrix([[8, 2, 2, 2], [3, -1, 7, 0], [7, 0, 5, 4], [6, -2, 0, 5]]) m3 = m1 * m2 result = m3 * m2.inverse() assert self.rounded(m1.data) == self.rounded(result.data)
def lse(data_points, base, lamb): # print (f'Processing LSE with data points: {data_points} and lambda {lamb}') A, b = extract_paras(data_points, base) identity = Matrix.make_identity(A.cols, lamb) A_reverse = A.reverse() A = A.reverse().mul(A).add(identity) A = Matrix.inverse(A) return A.mul(A_reverse).mul(b).data
def newtons_method(data_points, base, iteration): A, b = extract_paras(data_points, base) x = Matrix([[random.randint(1, 100)], [random.randint(1, 100)]]) for i in range(iteration): gradient = A.reverse().mul(A).mul(x).mul_const(2).sub( A.reverse().mul(b).mul_const(2)) hessian = A.reverse().mul(A).mul_const(2) x = x.sub(Matrix.inverse(hessian).mul(gradient)) return x.data
def test_second_4_by_4_inversion(self): matrix = Matrix([[8, -5, 9, 2], [7, 5, 6, 1], [-6, 0, 9, 6], [-3, 0, -9, -4]]) result = matrix.inverse() assert self.rounded(result.data) == [ [-0.15385, -0.15385, -0.28205, -0.53846], [-0.07692, 0.12308, 0.02564, 0.03077], [0.35897, 0.35897, 0.43590, 0.92308], [-0.69231, -0.69231, -0.76923, -1.92308], ]
def extract_paras(data_points, base): A = list() b = list() for x, y in data_points: row = list() for i in range(base - 1, -1, -1): row.append(float(x)**i) A.append(row) b.append([float(y)]) b = Matrix(b) A = Matrix(A) return A, b
def test_idenity_matrix_mul_by_coordinates(self): identity_matrix = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) coord = Coordinates(1, 2, 3, 4) result = identity_matrix * coord assert result == coord
def test_matrix_multiplication_to_coordinate(self): matrix = Matrix([[1, 2, 3, 4], [2, 4, 4, 2], [8, 6, 4, 1], [0, 0, 0, 1]]) coord = Coordinates(1, 2, 3, 1) result = matrix * coord assert result == Coordinates(18, 24, 33, 1)
def rotation_z(rads): return Matrix( [ [cos(rads), -sin(rads), 0, 0], [sin(rads), cos(rads), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] )
def test_inverse_matrix(self): matrix = Matrix([[-5, 2, 6, -8], [1, -5, 1, 8], [7, 7, -6, -7], [1, -3, 7, 4]]) result = matrix.inverse() assert matrix.determinant() == 532 assert matrix.cofactor(2, 3) == -160 assert matrix.cofactor(3, 2) == 105 assert result.at(3, 2) == -160 / 532 assert result.at(2, 3) == 105 / 532 assert self.rounded(result.data) == [ [0.21805, 0.45113, 0.24060, -0.04511], [-0.80827, -1.45677, -0.44361, 0.52068], [-0.07895, -0.22368, -0.05263, 0.19737], [-0.52256, -0.81391, -0.30075, 0.30639], ]
def rotation_y(rads): return Matrix( [ [cos(rads), 0, sin(rads), 0], [0, 1, 0, 0], [-sin(rads), 0, cos(rads), 0], [0, 0, 0, 1], ] )
def rotation_x(rads): return Matrix( [ [1, 0, 0, 0], [0, cos(rads), -sin(rads), 0], [0, sin(rads), cos(rads), 0], [0, 0, 0, 1], ] )
def test_calculating_cofactor_of_3_by_3_matrix(self): matrix = Matrix([[3, 5, 0], [2, -1, -7], [6, -1, 5]]) assert matrix.minor(0, 0) == -12 assert matrix.minor(0, 0) == matrix.cofactor(0, 0) assert matrix.minor(1, 0) == 25 assert matrix.cofactor(1, 0) == -25
def test_initialization(self): data = [ [1, 2, 3, 4], [5.5, 6.5, 7.5, 8.5], [9, 10, 11, 12], [13.5, 14.5, 15.5, 16.5], ] matrix = Matrix(data) assert matrix.at(0, 0) == 1 assert matrix.at(0, 3) == 4 assert matrix.at(1, 0) == 5.5 assert matrix.at(1, 2) == 7.5 assert matrix.at(2, 2) == 11 assert matrix.at(3, 0) == 13.5 assert matrix.at(3, 2) == 15.5
def test_matrix_is_invertible(self): matrix = Matrix([[6, 4, 4, 4], [5, 5, 7, 6], [4, -9, 3, -7], [9, 1, 7, -6]]) assert matrix.is_invertible()
def scaling(x, y, z): return Matrix([[x, 0, 0, 0], [0, y, 0, 0], [0, 0, z, 0], [0, 0, 0, 1]])
def test_calculating_determinant_of_2_by_2_matrix(self): matrix = Matrix([[1, 5], [-3, 2]]) result = matrix.determinant() assert result == 17
def test_submatrix_of_3_by_3_is_2_by_2_matrix(self): matrix = Matrix([[1, 5, 0], [-3, 2, 7], [0, 6, -3]]) result = matrix.submatrix(0, 2) assert result == Matrix([[-3, 2], [0, 6]])
def test_matrix_is_not_invertible(self): matrix = Matrix([[-4, 2, -2, -3], [9, 6, 2, 6], [0, -5, 1, -5], [0, 0, 0, 0]]) assert not matrix.is_invertible()