def sarcos_all_joints_experiment(method, components, sparsity_factor, run_id, image=None, n_threads=1, partition_size=3000, optimize_stochastic=False): """ Run the sarcos experiment on all joints. Parameters ---------- method : str The method under which to run the experiment (mix1, mix2, or full). sparsity_factor : float The sparsity of inducing points. run_id : int The id of the configuration. """ name = 'sarcos_all_joints' data = data_source.sarcos_all_joints_data()[run_id - 1] kernel = get_kernels(data['train_inputs'].shape[1], 8, False) cond_ll = likelihood.CogLL(0.1, 7, 1) scaler = data_transformation.preprocessing.StandardScaler().fit( data['train_inputs']) data['train_inputs'] = scaler.transform(data['train_inputs']) data['test_inputs'] = scaler.transform(data['test_inputs']) transform = data_transformation.MeanStdYTransformation( data['train_inputs'], data['train_outputs']) return run_model.run_model(data['train_inputs'], data['train_outputs'], data['test_inputs'], data['test_outputs'], cond_ll, kernel, method, components, name, data['id'], sparsity_factor, transform, False, False, optimization_config={ 'mog': 25, 'hyp': 10, 'll': 10, 'inducing': 6 }, max_iter=200, partition_size=partition_size, ftol=10, n_threads=n_threads, model_image_dir=image, optimize_stochastic=optimize_stochastic)
def sarcos_inducing_experiment(method, sparsity_factor, run_id, image=None, n_threads=1, partition_size=3000, optimize_stochastic=False): """ Run the sarcos experiment on two joints. Parameters ---------- method : str The method under which to run the experiment (mix1, mix2, or full). sparsity_factor : float The sparsity of inducing points. run_id : int The id of the configuration. """ name = 'sarcos' data = data_source.sarcos_data()[run_id - 1] kernel = get_kernels(data['train_inputs'].shape[1], 3, False) cond_ll = likelihood.CogLL(0.1, 2, 1) transform = data_transformation.MeanStdYTransformation( data['train_inputs'], data['train_outputs']) return run_model.run_model(data['train_inputs'], data['train_outputs'], data['test_inputs'], data['test_outputs'], cond_ll, kernel, method, name, data['id'], sparsity_factor, transform, True, False, optimization_config={ 'mog': 5, 'hyp': 2, 'll': 2, 'inducing': 1 }, max_iter=200, partition_size=partition_size, n_threads=n_threads, model_image_dir=image, optimize_stochastic=optimize_stochastic)