def create_maps(sentences): """ 建立字和标签的字典 """ if config.pre_emb: """ 首先利用训练集建立字典 """ dico_chars_train, _, _ = char_mapping(sentences, config.lower) """ 预训练字向量中的字,如果不在上面的字典中,则加入 """ dico_chars, char_to_id, id_to_char = augment_with_pretrained(dico_chars_train.copy(), config.emb_file) else: """ 只利用训练集建立字典 """ _, char_to_id, id_to_char = char_mapping(sentences, config.lower) """ 利用训练集建立标签字典 """ _, tag_to_id, id_to_tag = tag_mapping(sentences) with open(config.map_file, "wb") as f: pickle.dump([char_to_id, id_to_char, tag_to_id, id_to_tag], f) return char_to_id, id_to_char, tag_to_id, id_to_tag
def train(): #load data train_sentences = load_sentences(FLAGS.train_file, FLAGS.lower, FLAGS.zeros) dev_sentences = load_sentences(FLAGS.dev_file, FLAGS.lower, FLAGS.zeros) test_sentences = load_sentences(FLAGS.test_file, FLAGS.lower, FLAGS.zeros) if not os.path.isfile(FLAGS.map_file): if FLAGS.pre_emb: dico_chars_train = char_mapping(train_sentences, FLAGS.lower)[0] dico_chars, char_to_id, id_to_char = augment_with_pretrained( dico_chars_train.copy(), FLAGS.emb_file, list(itertools.chain.from_iterable( [[w[0] for w in s] for s in test_sentences]) ) )
train_sentences = load_sentences(FLAGS.train_file, FLAGS.lower, FLAGS.zeros) dev_sentences = load_sentences(FLAGS.dev_file, FLAGS.lower, FLAGS.zeros) test_sentences = load_sentences(FLAGS.test_file, FLAGS.lower, FLAGS.zeros) if not os.path.isfile(FLAGS.map_file): if FLAGS.pre_emb: dico_chars_train = char_mapping(train_sentences, FLAGS.lower)[0] dico_chars, char_to_id, id_to_char = augment_with_pretrained( dico_chars_train.copy(), FLAGS.emb_file, list(itertools.chain.from_iterable( [[w[0] for w in s] for s in test_sentences]) ) ) else: _c, char_to_id, id_to_char = char_mapping(train_sentences, FLAGS.lower) # Create a dictionary and a mapping for tags _t, tag_to_id, id_to_tag = tag_mapping(train_sentences) with open(FLAGS.map_file, "wb") as f: pickle.dump([char_to_id, id_to_char, tag_to_id, id_to_tag], f) else: with open(FLAGS.map_file, "rb") as f: char_to_id, id_to_char, tag_to_id, id_to_tag = pickle.load(f) train_data = prepare_dataset( train_sentences, char_to_id, tag_to_id, FLAGS.lower, FLAGS.self_seg ) dev_data = prepare_dataset( dev_sentences, char_to_id, tag_to_id, FLAGS.lower, FLAGS.self_seg )
def train(): # load data sets train_sentences=load_sentences(FLAGS.train_file,FLAGS.zeros) dev_sentences=load_sentences(FLAGS.dev_file,FLAGS.zeros) test_sentences=load_sentences(FLAGS.test_file,FLAGS.zeros) # appoint tagging scheme (IOB/IOBES) train_sentences=update_tag_scheme(train_sentences,FLAGS.tag_schema) dev_sentences=update_tag_scheme(dev_sentences,FLAGS.tag_schema) test_sentences=update_tag_scheme(test_sentences,FLAGS.tag_schema) #create maps if not exist if not os.path.exists(FLAGS.map_file): if FLAGS.pre_emb: char_to_id,_=char_mapping(train_sentences) char_to_id,id_to_char=augment_with_pretrained(char_to_id,'wiki_100.utf8') else: char_to_id, id_to_char=char_mapping(train_sentences) tag_to_id, id_to_tag=tag_mapping(train_sentences) with open(FLAGS.map_file,'wb') as f: cPickle.dump([char_to_id,id_to_char,tag_to_id,id_to_tag],f,cPickle.HIGHEST_PROTOCOL) else: with open(FLAGS.map_file,'rb') as f: char_to_id, id_to_char, tag_to_id, id_to_tag=cPickle.load(f) # prepare data, get a collection of list containing index train_data=prepare_dataset(train_sentences,char_to_id,tag_to_id,True) dev_data=prepare_dataset(dev_sentences,char_to_id,tag_to_id,True) test_data=prepare_dataset(test_sentences,char_to_id,tag_to_id,True) print "%i %i %i sentences in train / dev / test." % (len(train_data),len(dev_data),len(test_data)) if not FLAGS.pre_emb: pre_emb=None else: pre_emb=load_word2vec(FLAGS.pre_emb_file,char_to_id,FLAGS.char_dim) print "init embedding shape: (%d,%d)" %(pre_emb.shape[0],pre_emb.shape[1]) train_manager=BatchManager(train_data,FLAGS.batch_size,True) dev_manager=BatchManager(dev_data,FLAGS.batch_size,False) test_manager=BatchManager(test_data,FLAGS.batch_size,False) config=BasicModelConfig(FLAGS,len(char_to_id),len(tag_to_id),4) tfConfig = tf.ConfigProto() tfConfig.gpu_options.per_process_gpu_memory_fraction = FLAGS.memory_usage with tf.Session(config=tfConfig) as sess: print "Train started!" model=BasicModel(config,pre_emb) saver=tf.train.Saver() # tensorboard if not os.path.exists(FLAGS.summaries_dir): os.mkdir(FLAGS.summaries_dir) merged=tf.summary.merge_all() train_writer=tf.summary.FileWriter(os.path.join(FLAGS.summaries_dir,FLAGS.model_name,"train"),sess.graph) test_writer=tf.summary.FileWriter(os.path.join(FLAGS.summaries_dir,FLAGS.model_name,"test"),sess.graph) # load previous trained model or create a new model if not os.path.exists(FLAGS.checkpoints): os.mkdir(FLAGS.checkpoints) model_name=os.path.join(FLAGS.checkpoints,FLAGS.model_name) ckpt=tf.train.get_checkpoint_state(FLAGS.checkpoints) if ckpt and ckpt.model_checkpoint_path: print "restore from previous traied model: %s" % FLAGS.model_name saver.restore(sess,ckpt.model_checkpoint_path) else: sess.run(tf.global_variables_initializer()) def evaluate(sess,model,manager): strings=[] predicts=[] goldens=[] bar = ProgressBar(max_value=manager.num_batch) for batch in bar(manager.iter_batch()): batch_string,batch_predict,batch_golden=model.evaluate_step(sess,batch) strings.extend(batch_string) predicts.extend(batch_predict) goldens.extend(batch_golden) return strings,predicts,goldens best_eval_f1=0 noimpro_num=0 for i in range(FLAGS.max_epoch): #train train_loss=[] bar = ProgressBar(max_value=train_manager.num_batch) for step,batch in bar(enumerate(train_manager.iter_batch())): batch.append(merged) summary,global_step,batch_loss=model.train_step(sess,batch,FLAGS.dropout_keep) #add summary to tensorboard train_writer.add_summary(summary,global_step) train_loss.append(batch_loss) print "Epoch %d Train loss is %.4f" % (i+1,np.mean(train_loss)) #dev strings,predicts,goldens=evaluate(sess,model,dev_manager) eval_f1=report_results(strings,predicts,goldens,id_to_char,id_to_tag,'outputs/dev') if eval_f1>best_eval_f1: best_eval_f1=eval_f1 noimpro_num=0 saver.save(sess,model_name) else: noimpro_num+=1 print "Epoch %d Best eval f1:%.6f" % (i+1,best_eval_f1) #test strings,predicts,goldens=evaluate(sess,model,test_manager) test_f1=report_results(strings,predicts,goldens,id_to_char,id_to_tag,'outputs/test',True) #early_stop if noimpro_num>=3: print "Early stop! Final F1 scores on test data is :%.6f" % test_f1 break print
def train(): # 加载数据集 train_sentences = load_sentences(FLAGS.train_file, FLAGS.lower, FLAGS.zeros) dev_sentences = load_sentences(FLAGS.dev_file, FLAGS.lower, FLAGS.zeros) test_sentences = load_sentences(FLAGS.test_file, FLAGS.lower, FLAGS.zeros) # 选择tag形式 (IOB / IOBES) 默认使用IOBES update_tag_scheme(train_sentences, FLAGS.tag_schema) update_tag_scheme(test_sentences, FLAGS.tag_schema) if not os.path.isfile(FLAGS.map_file): if FLAGS.pre_emb: dico_chars_train = char_mapping(train_sentences, FLAGS.lower)[0] dico_chars, char_to_id, id_to_char = augment_with_pretrained( dico_chars_train.copy(), FLAGS.emb_file, list( itertools.chain.from_iterable([[w[0] for w in s] for s in test_sentences]))) else: _c, char_to_id, id_to_char = char_mapping(train_sentences, FLAGS.lower) # Create a dictionary and a mapping for tags _t, tag_to_id, id_to_tag = tag_mapping(train_sentences) with open(FLAGS.map_file, "wb") as f: pickle.dump([char_to_id, id_to_char, tag_to_id, id_to_tag], f) else: with open(FLAGS.map_file, "rb") as f: # {'S-LOC': 10, 'E-LOC': 3, 'B-ORG': 4, 'S-PER': 11, 'S-ORG': 12, 'O': 0, # 'E-ORG': 5, 'I-LOC': 6, 'I-PER': 7, 'I-ORG': 1, 'B-PER': 8, 'B-LOC': 2, 'E-PER': 9} char_to_id, id_to_char, tag_to_id, id_to_tag = pickle.load(f) # 转化成数字化的数据 train_data = prepare_dataset(train_sentences, char_to_id, tag_to_id, FLAGS.lower) dev_data = prepare_dataset(dev_sentences, char_to_id, tag_to_id, FLAGS.lower) test_data = prepare_dataset(test_sentences, char_to_id, tag_to_id, FLAGS.lower) print("%i / %i / %i sentences in train / dev / test." % (len(train_data), len(dev_data), len(test_data))) #长度不足补0 train_manager = BatchManager(train_data, FLAGS.batch_size) dev_manager = BatchManager(dev_data, 100) test_manager = BatchManager(test_data, 100) make_path(FLAGS) if os.path.isfile(FLAGS.config_file): config = load_config(FLAGS.config_file) else: config = config_model(char_to_id, tag_to_id) save_config(config, FLAGS.config_file) make_path(FLAGS) log_path = os.path.join("log", FLAGS.log_file) logger = get_logger(log_path) print_config(config, logger) # GPU设置 tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True steps_per_epoch = train_manager.len_data with tf.Session(config=tf_config) as sess: model = create_model(sess, Model, FLAGS.ckpt_path, load_word2vec, config, id_to_char, logger) logger.info("start training") loss = [] for i in range(100): for batch in train_manager.iter_batch(shuffle=True): step, batch_loss = model.run_step(sess, True, batch) loss.append(batch_loss) if step % FLAGS.steps_check == 0: iteration = step // steps_per_epoch + 1 logger.info("iteration:{} step:{}/{}, " "NER loss:{:>9.6f}".format( iteration, step % steps_per_epoch, steps_per_epoch, np.mean(loss))) # 每100次算一次平均loss loss = [] best = evaluate(sess, model, "dev", dev_manager, id_to_tag, logger) if best: save_model(sess, model, FLAGS.ckpt_path, logger) evaluate(sess, model, "test", test_manager, id_to_tag, logger)