def main(_): start_time = time.time() model_path = os.path.join('model', FLAGS.name) if os.path.exists(model_path) is False: os.makedirs(model_path) with open(FLAGS.input_file, 'r') as f: text = f.read() converter = TextConverter(text, FLAGS.max_vocab) converter.save_to_file(os.path.join(model_path, 'converter.pkl')) arr = converter.text_to_arr(text) g = batch_generator(arr, FLAGS.num_seqs, FLAGS.num_steps) print(converter.vocab_size) model = CharRNN(converter.vocab_size, num_seqs=FLAGS.num_seqs, num_steps=FLAGS.num_steps, lstm_size=FLAGS.lstm_size, num_layers=FLAGS.num_layers, learning_rate=FLAGS.learning_rate, train_keep_prob=FLAGS.train_keep_prob, use_embedding=FLAGS.use_embedding, embedding_size=FLAGS.embedding_size) model.train( g, FLAGS.max_steps, model_path, FLAGS.save_every_n, FLAGS.log_every_n, ) print("Timing cost is --- %s ---second(s)" % (time.time() - start_time))
def main(_): converter = TextConverter(filename=FLAGS.converter_path) if os.path.isdir(FLAGS.checkpoint_path): FLAGS.checkpoint_path = \ tf.train.latest_checkpoint(FLAGS.checkpoint_path) model = BilstmNer(converter.vocab_size, converter.num_classes, lstm_size=FLAGS.lstm_size, embedding_size=FLAGS.embedding_size) print("[*] Success to read {}".format(FLAGS.checkpoint_path)) model.load(FLAGS.checkpoint_path) demo_sent = "京剧研究院就美日联合事件讨论" tag = model.demo([(converter.text_to_arr(demo_sent), [0] * len(demo_sent)) ]) print(tag)