def read_all(reread=False): global words, sent for i in dt.get_all_books(): if dt.no_description(i) or reread: words = {} sent = {} read(i) out = sorted(words.items(), key=lambda t: -t[1]) dt.save_words_as(out, i) out = sorted(sent.items(), key=lambda t: t[0]) dt.save_words_as(out, i, 'sentenses')
def read_all(reread=False): global words, sent, gramm, letters, unknown, combinations global denials, names, multi_text for i in dt.get_all_books(): if dt.no_description(i) or reread: words = {} sent = {} gramm = {} particals = {} unknown = {} combinations = {} names = {'Name': 0, 'Surn': 0, 'Patr': 0, 'Fake': 0, 'Geox': 0} denials = 0 letters = dict([(chr(j), 0) for j in range(1072, 1104)]) letters['ё'] = 0 multi_text = [] read(i) gramm['denials'] = denials save_read(i) print(i + ' read.')
def sum_norm(x, A, B, C, D, E, F): return A*np.e**(B*(x+C)**2)+D*np.e**(E*(x+F)**2) def alternative(x, A, B, C, D , E, F, G, H): return (A*x**5+B*x**4+C*x**3+D*x**2+E*x+F)*np.e**(x*H+G) def norm(x, A, B, C): return A*np.e**(-B*(x+C)**2) NUMBER = 700 styles=['-','--','-.',':',''] books = dt.get_all_books() #books = dt.get_books_by("Толстой Лев Николаевич", prop='author') #books = ["Толстой Лев Николаевич#Война и мир#1",# "Толстой Лев Николаевич#Война и мир#2", #"Толстой Лев Николаевич#Война и мир#3", "Толстой Лев Николаевич#Война и мир#4", #"Толстой Лев Николаевич#Анна Каренина", "Тургенев Иван Сергеевич#Отцы и дети", # "Достоевский Федор Михайлович#Преступление и наказание", "Неизвестный автор#Война и мир"] all_y = {} for i in books: toConsider = dt.get_words(i,'sentenses') all_y = dt.sum_dicts(all_y, dict(toConsider)) #[:NUMBER] #C = sum(list(map(lambda t: t[1], dt.get_words(i)))) # print(C) #y = np.array(list(map(lambda t: t[1], toConsider))) # x = np.array(list(map(lambda t: t[0], toConsider)))
import sentence_length_comparator import matplotlib.pyplot as plt import math_worker as mt import math SQUARE_FUNCTION = lambda l1, l2: (l2 - l1)**2 SQUARE_FUNCTION.__name__ = 'SQUARE_FUNCTION' ##ABS_FUNCTION = lambda l1, l2: abs(l2 - l1) ##ABS_FUNCTION.__name__ = 'ABS_FUNCTION' ##POW_FUNCTION = lambda l1, l2: 2**(l2 - l1) - 1 ##POW_FUNCTION.__name__ = 'POW_FUNCTION' ##LOG_FUNCTION = lambda l1, l2: abs(math.log(l1+1)-math.log(l2+1)) ##LOG_FUNCTION.__name__ = 'LOG_FUNCTION' ## all_data = dt.get_all_books() prop_stack = ['letters', 'grammatics', 'combinations', 'sentences', 'unknown'] f_aviable = [SQUARE_FUNCTION] ##for p in range(1,10): ## for i in range(1,10): ## f = lambda l1, l2: (abs(l1-l2)**p) ## f.__name__ = str(p) + '#' + str(i) ## f_aviable.append(f) methods = {} rating = {} while prop_stack: prop_name = prop_stack[-1]
import data_worker as dt for i in dt.get_all_books(): f = open(dt.get_file(i), 'r') text = f.read() f.close() while True: i1 = text.find('[') i2 = text.find(']', i1) if i1 == -1 or i2 == -1: break text = text[:i1] + text[i2 + 1:] f = open(dt.get_file(i), 'w') f.write(text) f.close()