res = [ epoch, round(tr_loss_tot, 3), round(tr_acc_tot * 100, 3), round(val_loss_tot, 3), round(val_acc_tot * 100, 3) ] print('\t'.join(map(str, res))) #print(epoch, val_loss_tot, val_acc_tot * 100) # if loss is too high, convergence failure so don't bother to make predictions if val_loss_tot > 1.0: continue print("Predicting with test images...") imgs_per_batch = 99 for j in range(0, 1001, imgs_per_batch): X_sub_part, sub_ids_part = load_test_data(j, imgs_per_batch) y_proba_part = pred_fn(X_sub_part) if j == 0: y_proba = y_proba_part ids = sub_ids_part else: y_proba = np.append(y_proba, y_proba_part, axis=0) ids = np.append(ids, sub_ids_part, axis=0) if j % 99 == 0: print(j) make_submission('../output/submission_vgs_' + str(i) + '.csv', y_proba, ids)
res = [ epoch, round(tr_loss_tot, 3), round(tr_acc_tot * 100, 3), round(val_loss_tot, 3), round(val_acc_tot * 100, 3) ] print('\t'.join(map(str, res))) #print(epoch, val_loss_tot, val_acc_tot * 100) # if loss is too high, convergence failure so don't bother to make predictions if val_loss_tot > 1.0: continue print("Predicting with test images...") imgs_per_batch = 99 for j in range(0, 1001, imgs_per_batch): X_sub_part, sub_ids_part = load_test_data(j, imgs_per_batch) y_proba_part = pred_fn(X_sub_part) if j == 0: y_proba = y_proba_part ids = sub_ids_part else: y_proba = np.append(y_proba, y_proba_part, axis=0) ids = np.append(ids, sub_ids_part, axis=0) if j % 99 == 0: print(j) make_submission('../output/submission_vgg16_zoomed' + str(i) + '.csv', y_proba, ids)
tr_loss_tot /= len(t_ix[:2000]) tr_acc_tot /= len(t_ix[:2000]) val_loss_tot /= len(v_ix) val_acc_tot /= len(v_ix) res = [epoch, round(tr_loss_tot,3), round(tr_acc_tot*100,3), round(val_loss_tot,3), round(val_acc_tot * 100,3)] print('\t'.join(map(str,res))) #print(epoch, val_loss_tot, val_acc_tot * 100) # if loss is too high, convergence failure so don't bother to make predictions if val_loss_tot > 1.0: continue print("Predicting with test images...") imgs_per_batch = 99 for j in range(0, 1001, imgs_per_batch): X_sub_part, sub_ids_part = load_test_data(j, imgs_per_batch) y_proba_part = pred_fn(X_sub_part) if j==0: y_proba = y_proba_part ids = sub_ids_part else: y_proba = np.append(y_proba, y_proba_part, axis=0) ids = np.append(ids, sub_ids_part, axis=0) if j%99==0: print(j) make_submission('../output/submission_resnet50_' + str(i) + '.csv', y_proba, ids)