예제 #1
0
    def run(self):

        shape = (4000, 4000)
        no_data_value = NDV

        best_pixel_fc = dict()

        for band in Fc25Bands:
            # best_pixel_fc[band] = empty_array(shape=shape, dtype=numpy.int16, ndv=INT16_MIN)
            best_pixel_fc[band] = empty_array(shape=shape, dtype=numpy.int16, ndv=NDV)

        best_pixel_nbar = dict()

        for band in Ls57Arg25Bands:
            best_pixel_nbar[band] = empty_array(shape=shape, dtype=numpy.int16, ndv=NDV)

        best_pixel_satellite = empty_array(shape=shape, dtype=numpy.int16, ndv=NDV)
        best_pixel_date = empty_array(shape=shape, dtype=numpy.int32, ndv=NDV)

        current_satellite = empty_array(shape=shape, dtype=numpy.int16, ndv=NDV)
        current_date = empty_array(shape=shape, dtype=numpy.int32, ndv=NDV)

        SATELLITE_DATA_VALUES = {Satellite.LS5: 5, Satellite.LS7: 7, Satellite.LS8: 8}

        metadata_nbar = None
        metadata_fc = None

        for tile in self.get_tiles():

            pqa = tile.datasets[DatasetType.PQ25]
            nbar = tile.datasets[DatasetType.ARG25]
            fc = tile.datasets[DatasetType.FC25]
            wofs = DatasetType.WATER in tile.datasets and tile.datasets[DatasetType.WATER] or None

            _log.info("Processing [%s]", fc.path)

            data = dict()

            # Create an initial "no mask" mask

            mask = numpy.ma.make_mask_none((4000, 4000))
            # _log.info("### mask is [%s]", mask[1000][1000])

            # Add the PQA mask if we are doing PQA masking

            if self.mask_pqa_apply:
                mask = get_mask_pqa(pqa, pqa_masks=self.mask_pqa_mask, mask=mask)
                # _log.info("### mask PQA is [%s]", mask[1000][1000])

            # Add the WOFS mask if we are doing WOFS masking

            if self.mask_wofs_apply and wofs:
                mask = get_mask_wofs(wofs, wofs_masks=self.mask_wofs_mask, mask=mask)
                # _log.info("### mask PQA is [%s]", mask[1000][1000])

            # Get NBAR dataset

            data[DatasetType.ARG25] = get_dataset_data_masked(nbar, mask=mask)
            # _log.info("### NBAR/RED is [%s]", data[DatasetType.ARG25][Ls57Arg25Bands.RED][1000][1000])

            # Get the NDVI dataset

            data[DatasetType.NDVI] = calculate_ndvi(data[DatasetType.ARG25][Ls57Arg25Bands.RED],
                                                    data[DatasetType.ARG25][Ls57Arg25Bands.NEAR_INFRARED])
            # _log.info("### NDVI is [%s]", data[DatasetType.NDVI][1000][1000])

            # Add the NDVI value range mask (to the existing mask)

            mask = self.get_mask_range(data[DatasetType.NDVI], min_val=0.0, max_val=0.3, mask=mask)
            # _log.info("### mask NDVI is [%s]", mask[1000][1000])

            # Get FC25 dataset

            data[DatasetType.FC25] = get_dataset_data_masked(fc, mask=mask)
            # _log.info("### FC/BS is [%s]", data[DatasetType.FC25][Fc25Bands.BARE_SOIL][1000][1000])

            # Add the bare soil value range mask (to the existing mask)

            mask = self.get_mask_range(data[DatasetType.FC25][Fc25Bands.BARE_SOIL], min_val=0, max_val=8000, mask=mask)
            # _log.info("### mask BS is [%s]", mask[1000][1000])

            # Apply the final mask to the FC25 bare soil data

            data_bare_soil = numpy.ma.MaskedArray(data=data[DatasetType.FC25][Fc25Bands.BARE_SOIL], mask=mask).filled(NDV)
            # _log.info("### bare soil is [%s]", data_bare_soil[1000][1000])

            # Compare the bare soil value from this dataset to the current "best" value

            best_pixel_fc[Fc25Bands.BARE_SOIL] = numpy.fmax(best_pixel_fc[Fc25Bands.BARE_SOIL], data_bare_soil)
            # _log.info("### best pixel bare soil is [%s]", best_pixel_fc[Fc25Bands.BARE_SOIL][1000][1000])

            # Now update the other best pixel datasets/bands to grab the pixels we just selected

            for band in Ls57Arg25Bands:
                best_pixel_nbar[band] = propagate_using_selected_pixel(best_pixel_fc[Fc25Bands.BARE_SOIL],
                                                                       data_bare_soil,
                                                                       data[DatasetType.ARG25][band],
                                                                       best_pixel_nbar[band])

            for band in [Fc25Bands.PHOTOSYNTHETIC_VEGETATION, Fc25Bands.NON_PHOTOSYNTHETIC_VEGETATION, Fc25Bands.UNMIXING_ERROR]:
                best_pixel_fc[band] = propagate_using_selected_pixel(best_pixel_fc[Fc25Bands.BARE_SOIL],
                                                                     data_bare_soil,
                                                                     data[DatasetType.FC25][band],
                                                                     best_pixel_fc[band])

            # And now the other "provenance" data

            # Satellite "provenance" data

            current_satellite.fill(SATELLITE_DATA_VALUES[fc.satellite])

            best_pixel_satellite = propagate_using_selected_pixel(best_pixel_fc[Fc25Bands.BARE_SOIL],
                                                                  data_bare_soil,
                                                                  current_satellite,
                                                                  best_pixel_satellite)

            # Date "provenance" data

            current_date.fill(date_to_integer(tile.end_datetime))

            best_pixel_date = propagate_using_selected_pixel(best_pixel_fc[Fc25Bands.BARE_SOIL],
                                                             data_bare_soil,
                                                             current_date,
                                                             best_pixel_date)

            # Grab the metadata from the input datasets for use later when creating the output datasets

            if not metadata_nbar:
                metadata_nbar = get_dataset_metadata(nbar)

            if not metadata_fc:
                metadata_fc = get_dataset_metadata(fc)

        # Create the output datasets

        # FC composite

        raster_create(self.get_dataset_filename("FC"),
                      [best_pixel_fc[b] for b in Fc25Bands],
                      metadata_fc.transform, metadata_fc.projection,
                      metadata_fc.bands[Fc25Bands.BARE_SOIL].no_data_value,
                      metadata_fc.bands[Fc25Bands.BARE_SOIL].data_type)

        # NBAR composite

        raster_create(self.get_dataset_filename("NBAR"),
                      [best_pixel_nbar[b] for b in Ls57Arg25Bands],
                      metadata_nbar.transform, metadata_nbar.projection,
                      metadata_nbar.bands[Ls57Arg25Bands.BLUE].no_data_value,
                      metadata_nbar.bands[Ls57Arg25Bands.BLUE].data_type)

        # Satellite "provenance" composites

        raster_create(self.get_dataset_filename("SAT"),
                      [best_pixel_satellite],
                      metadata_nbar.transform, metadata_nbar.projection, no_data_value,
                      gdal.GDT_Int16)

        # Date "provenance" composites

        raster_create(self.get_dataset_filename("DATE"),
                      [best_pixel_date],
                      metadata_nbar.transform, metadata_nbar.projection, no_data_value,
                      gdal.GDT_Int32)
예제 #2
0
    def doit(self):

        _log.debug("Bare Soil Cell Task - doit()")
        shape = (4000, 4000)
        no_data_value = NDV

        best_pixel_fc = dict()

        for band in Fc25Bands:
            best_pixel_fc[band] = empty_array(shape=shape, dtype=numpy.int16, ndv=INT16_MIN)

        best_pixel_nbar = dict()

        for band in Ls57Arg25Bands:
            best_pixel_nbar[band] = empty_array(shape=shape, dtype=numpy.int16, ndv=NDV)

        best_pixel_satellite = empty_array(shape=shape, dtype=numpy.int16, ndv=NDV)
        best_pixel_year = empty_array(shape=shape, dtype=numpy.int16, ndv=NDV)
        best_pixel_month = empty_array(shape=shape, dtype=numpy.int16, ndv=NDV)
        best_pixel_epoch = empty_array(shape=shape, dtype=numpy.int32, ndv=NDV)

        current_satellite = empty_array(shape=shape, dtype=numpy.int16, ndv=NDV)
        current_year = empty_array(shape=shape, dtype=numpy.int16, ndv=NDV)
        current_month = empty_array(shape=shape, dtype=numpy.int16, ndv=NDV)
        current_epoch = empty_array(shape=shape, dtype=numpy.int32, ndv=NDV)

        SATELLITE_DATA_VALUES = {Satellite.LS5: 5, Satellite.LS7: 7, Satellite.LS8: 8}

        metadata_nbar = None
        metadata_fc = None

        for tile in self.get_tiles():
            # Get the PQ mask

            pq = tile.datasets[DatasetType.PQ25]
            data_pq = get_dataset_data(pq, [Pq25Bands.PQ])[Pq25Bands.PQ]

            mask_pq = get_pq_mask(data_pq)

            # Get NBAR dataset

            nbar = tile.datasets[DatasetType.ARG25]
            _log.info("Processing NBAR tile [%s]", nbar.path)

            if not metadata_nbar:
                metadata_nbar = get_dataset_metadata(nbar)

            data_nbar = get_dataset_data_with_pq(nbar, Ls57Arg25Bands, tile.datasets[DatasetType.PQ25])

            # Get the NDVI mask

            red = data_nbar[Ls57Arg25Bands.RED]
            nir = data_nbar[Ls57Arg25Bands.NEAR_INFRARED]

            ndvi_data = calculate_ndvi(red, nir)

            ndvi_data = numpy.ma.masked_equal(ndvi_data, NDV)
            ndvi_data = numpy.ma.masked_outside(ndvi_data, 0, 0.3, copy=False)

            mask_ndvi = ndvi_data.mask

            # Get FC25 dataset

            fc = tile.datasets[DatasetType.FC25]
            _log.info("Processing FC tile [%s]", fc.path)

            if not metadata_fc:
                metadata_fc = get_dataset_metadata(fc)

            _log.debug("metadata fc is %s", metadata_fc)

            data_fc = get_dataset_data(fc, Fc25Bands)

            data_bare_soil = data_fc[Fc25Bands.BS]
            data_bare_soil = numpy.ma.masked_equal(data_bare_soil, -999)
            data_bare_soil = numpy.ma.masked_outside(data_bare_soil, 0, 8000)
            data_bare_soil.mask = (data_bare_soil.mask | mask_pq | mask_ndvi)
            data_bare_soil = data_bare_soil.filled(NDV)

            # Compare the bare soil value from this dataset to the current "best" value
            best_pixel_fc[Fc25Bands.BS] = numpy.fmax(best_pixel_fc[Fc25Bands.BS], data_bare_soil)

            # Now update the other best pixel datasets/bands to grab the pixels we just selected

            for band in Ls57Arg25Bands:
                best_pixel_nbar[band] = propagate_using_selected_pixel(best_pixel_fc[Fc25Bands.BS],
                                                                       data_bare_soil,
                                                                       data_nbar[band],
                                                                       best_pixel_nbar[band])

            for band in [Fc25Bands.PV, Fc25Bands.NPV, Fc25Bands.ERROR]:
                best_pixel_fc[band] = propagate_using_selected_pixel(best_pixel_fc[Fc25Bands.BS],
                                                                     data_bare_soil,
                                                                     data_fc[band],
                                                                     best_pixel_fc[band])

            # And now the other "provenance" data

            current_satellite.fill(SATELLITE_DATA_VALUES[fc.satellite])

            best_pixel_satellite = propagate_using_selected_pixel(best_pixel_fc[Fc25Bands.BS],
                                                                  data_bare_soil,
                                                                  current_satellite,
                                                                  best_pixel_satellite)

            current_year.fill(tile.end_datetime_year)

            best_pixel_year = propagate_using_selected_pixel(best_pixel_fc[Fc25Bands.BS],
                                                             data_bare_soil,
                                                             current_year,
                                                             best_pixel_year)

            current_month.fill(tile.end_datetime_month)

            best_pixel_month = propagate_using_selected_pixel(best_pixel_fc[Fc25Bands.BS],
                                                              data_bare_soil,
                                                              current_month,
                                                              best_pixel_month)

            current_epoch.fill(calendar.timegm(tile.end_datetime.timetuple()))

            best_pixel_epoch = propagate_using_selected_pixel(best_pixel_fc[Fc25Bands.BS],
                                                              data_bare_soil,
                                                              current_epoch,
                                                              best_pixel_epoch)

        # Create the output datasets

        # FC composite

        raster_create(self.get_dataset_filename("FC"),
                      [best_pixel_fc[b] for b in Fc25Bands],
                      metadata_fc.transform, metadata_fc.projection, metadata_fc.bands[Fc25Bands.BS].no_data_value,
                      metadata_fc.bands[Fc25Bands.BS].data_type)

        # NBAR composite

        raster_create(self.get_dataset_filename("NBAR"),
                      [best_pixel_nbar[b] for b in Ls57Arg25Bands],
                      metadata_nbar.transform, metadata_nbar.projection,
                      metadata_nbar.bands[Ls57Arg25Bands.BLUE].no_data_value,
                      metadata_nbar.bands[Ls57Arg25Bands.BLUE].data_type)

        # "Provenance" composites

        raster_create(self.get_dataset_filename("SAT"),
                      [best_pixel_satellite],
                      metadata_nbar.transform, metadata_nbar.projection, no_data_value,
                      gdal.GDT_Int16)

        raster_create(self.get_dataset_filename("YEAR"),
                      [best_pixel_year],
                      metadata_nbar.transform, metadata_nbar.projection, no_data_value,
                      gdal.GDT_Int16)

        raster_create(self.get_dataset_filename("MONTH"),
                      [best_pixel_month],
                      metadata_nbar.transform, metadata_nbar.projection, no_data_value,
                      gdal.GDT_Int16)

        raster_create(self.get_dataset_filename("EPOCH"),
                      [best_pixel_epoch],
                      metadata_nbar.transform, metadata_nbar.projection, no_data_value,
                      gdal.GDT_Int32)