예제 #1
0
# Get senario handler
from dataiku.scenario import Scenario

scenario = Scenario()

# Create a message sender
sender = scenario.get_message_sender(channel_id="gmail")  # A messaging channel

# Define your attachment
attachment = {
    "destinationType": "DOWNLOAD",
    "destinationDatasetProjectKey": "DKU_CHURN",
    "overwriteDestinationDataset": "false",
    "selection": {
        "samplingMethod": "FULL",
        "partitionSelectionMethod": "ALL",
        "targetRatio": 0.02,
        "maxRecords": 100000,
        "selectedPartitions": [],
        "ordering": {
            "enabled": "false",
            "rules": []
        }
    },
    "advancedMode": "false",
    "exportOption": {
        "id": "excel",
        "label": "Excel (*.xlsx)",
        "canStream": "false",
        "formatType": "excel",
        "predefinedConfig": {
예제 #2
0
# This sample code helps you get started with the custom scenario API.
#For more details and samples, please see our Documentation
from dataiku.scenario import Scenario

# The Scenario object is the main handle from which you initiate steps
scenario = Scenario()

# A few example steps follow

# Building a dataset
scenario.build_dataset("customers_prepared", partitions="2015-01-03")

# Controlling the train of a dataset
train_ret = scenario.train_model("uSEkldfsm")
trained_model = train_ret.get_trained_model()
performance = trained_model.get_new_version_metrics().get_performance_values()
if performance["AUC"] > 0.85:
    trained_model.activate_new_version()

# Sending custom reports
sender = scenario.get_message_sender("mail-scenario", "local-mail") # A messaging channel
sender.set_params(sender="*****@*****.**", recipient="*****@*****.**")

sender.send(subject="The scenario is doing well", message="All is good")