# Get senario handler from dataiku.scenario import Scenario scenario = Scenario() # Create a message sender sender = scenario.get_message_sender(channel_id="gmail") # A messaging channel # Define your attachment attachment = { "destinationType": "DOWNLOAD", "destinationDatasetProjectKey": "DKU_CHURN", "overwriteDestinationDataset": "false", "selection": { "samplingMethod": "FULL", "partitionSelectionMethod": "ALL", "targetRatio": 0.02, "maxRecords": 100000, "selectedPartitions": [], "ordering": { "enabled": "false", "rules": [] } }, "advancedMode": "false", "exportOption": { "id": "excel", "label": "Excel (*.xlsx)", "canStream": "false", "formatType": "excel", "predefinedConfig": {
# This sample code helps you get started with the custom scenario API. #For more details and samples, please see our Documentation from dataiku.scenario import Scenario # The Scenario object is the main handle from which you initiate steps scenario = Scenario() # A few example steps follow # Building a dataset scenario.build_dataset("customers_prepared", partitions="2015-01-03") # Controlling the train of a dataset train_ret = scenario.train_model("uSEkldfsm") trained_model = train_ret.get_trained_model() performance = trained_model.get_new_version_metrics().get_performance_values() if performance["AUC"] > 0.85: trained_model.activate_new_version() # Sending custom reports sender = scenario.get_message_sender("mail-scenario", "local-mail") # A messaging channel sender.set_params(sender="*****@*****.**", recipient="*****@*****.**") sender.send(subject="The scenario is doing well", message="All is good")