예제 #1
0
def test_cdets_import_from_excel():
    #---------------------------------------------------------
    excel_df = dataimport.import_from_excel(CDETSconfig, 'CDETS', 'PSIRT')
    assert isinstance(excel_df, pd.DataFrame)
    assert excel_df.columns.values.tolist() == [
        'Identifier', 'Status', 'SIR', 'Product', 'OPENED', 'CLOSED'
    ]
예제 #2
0
def test_get_swdl_grouped_data_by_date():
    #---------------------------------------------------------
    excel_df = dataimport.import_from_excel(SWDLconfig, 'SWDL', 'SWDL')
    assert isinstance(excel_df, pd.DataFrame)

    if isinstance(excel_df, pd.DataFrame):
        filtered_df = swdlprep.filter_swdl(excel_df)

        # check for 'CMA' 18M
        cma = dataprep.get_product_data(filtered_df, 'CMA', SWDLconfig, 'SWDL')
        cma_grp = swdlprep.group_data_by_date(cma, '18M', 'CMA')

        # check column names for CMA releases
        for c in cma_grp.columns.values.tolist():
            assert 'CMA' in c

        # check min/max dates are 18M apart (incl.)
        min_mth = cma_grp.index.values.tolist()[0]
        max_mth = cma_grp.index.values.tolist()[-1]

        start_dt = datetime.strptime("01-" + min_mth, "%d-%b-%Y")
        dt = util.get_next_date(
            datetime(start_dt.year, start_dt.month, start_dt.day), 17, 0)

        assert dt.strftime("%b-%Y") == max_mth

    else:
        pytest.fail()
예제 #3
0
def test_jira_import_from_excel():
    #---------------------------------------------------------
    excel_df = dataimport.import_from_excel(JIRAconfig, 'JIRA', 'CPFD')
    assert isinstance(excel_df, pd.DataFrame)
    assert excel_df.columns.values.tolist() == [
        'Issue id', 'Status', 'Priority', 'Issue key', 'Created', 'Resolved'
    ]
예제 #4
0
def test_swdl_import_from_excel():
    #---------------------------------------------------------
    excel_df = dataimport.import_from_excel(SWDLconfig, 'SWDL', 'SWDL')
    assert isinstance(excel_df, pd.DataFrame)

    assert 'Download Date and Time' in excel_df.columns.values.tolist()
    assert 'Full File Name' in excel_df.columns.values.tolist()
    assert 'Access Level Name' in excel_df.columns.values.tolist()
예제 #5
0
def test_get_swdl_product():
    #---------------------------------------------------------
    excel_df = dataimport.import_from_excel(SWDLconfig, 'SWDL', 'SWDL')
    assert isinstance(excel_df, pd.DataFrame)

    if isinstance(excel_df, pd.DataFrame):
        filtered_df = swdlprep.filter_swdl(excel_df)

        # filter for 'CMM'
        cmm1 = filtered_df[filtered_df.Product == "CMM"]
        cmm2 = dataprep.get_product_data(filtered_df, 'CMM', SWDLconfig,
                                         'SWDL')

        assert len(cmm1) == len(cmm2)

    else:
        pytest.fail()
예제 #6
0
def test_cms_swdl_kpi_chart():
    #---------------------------------------------------------
    excel_df = dataimport.import_from_excel(SWDLconfig, 'SWDL', 'SWDL')
    assert isinstance(excel_df, pd.DataFrame)

    if isinstance(excel_df, pd.DataFrame):
        filtered_df = swdlprep.filter_swdl(excel_df)
        CMS = dataprep.get_product_data(filtered_df, 'CMS', SWDLconfig, 'SWDL')

        # plot data
        df_plot = swdlprep.group_data_by_date(CMS, 'allW', 'CMS')
        kpi_chart = plotkpi.plot_swdl_chart(df_plot, 'CMS', 'allW', True)

        assert 'png' in kpi_chart  # assert kpi_chart is a picture file
        assert os.path.exists(kpi_chart)

    else:
        pytest.fail()
예제 #7
0
def test_filter_swdl():
    #---------------------------------------------------------
    excel_df = dataimport.import_from_excel(SWDLconfig, 'SWDL', 'SWDL')
    assert isinstance(excel_df, pd.DataFrame)

    if isinstance(excel_df, pd.DataFrame):
        filtered_df = swdlprep.filter_swdl(excel_df)

        # check additional columns added during filter function
        assert 'DownloadFile' in filtered_df.columns
        assert 'Product' in filtered_df.columns
        assert 'DownloadMonth' in filtered_df.columns

        # check export file created
        exportfile = os.path.join(os.getcwd(), config.autokpi["savedir"],
                                  "exportswdl.csv")
        assert os.path.exists(exportfile)

    else:
        pytest.fail()
예제 #8
0
def main(kpi_dict, importfromxl):

    kpilog.debug("Input Parms: {}".format(kpi_dict))

    clear_kpi_output()

    # Setup dates for filters and for plotting
    months_to_plot_df = dataprep.get_plot_months(None,
                                                 None)  # use default dates

    fyq_start, fyq_end = util.get_kpi_fyq_start_end(None,
                                                    None)  # use default dates
    months_fyq_df = dataprep.get_plot_months(fyq_start, fyq_end)

    # set var to determine if at end of current fyq
    end_fyq = False
    if util.is_fyq_start(fyq_end):
        end_fyq = True

    # Process each tool/kpi combination
    for tool, kpis in kpi_dict.items():
        import_df = None

        toolcfg = config.autokpi["tools"][tool]
        kpilog.info("Processing KPI for: {}".format(tool))

        for kpi in kpis:
            kpilog.debug("Selected - {}".format(kpi))
            plot_fyq = True

            # call separate process for ATC
            if kpi == 'ATC':
                process_atc_schedules(toolcfg, tool, kpi)
                continue

            if importfromxl:  # import data from (saved) excel workbook
                import_df = dataimport.import_from_excel(toolcfg, tool, kpi)
            elif kpi == 'BEMS':  # import from Oracle DB
                import_df = dataimport.import_from_db(toolcfg, kpi)
            elif kpi == 'SWDL':
                import_df = dataimport.import_from_excel(toolcfg, tool, kpi)
            else:  # import data using tool api
                import_df = dataimport.import_from_api(toolcfg, tool, kpi)

            if import_df is None:
                kpilog.warning("Could not import data for {0}: {1}".format(
                    tool, kpi))
                continue

            # call separate process for SWDL (Software Downloads)
            if kpi == 'SWDL':
                process_swdl_data(import_df, toolcfg)
                continue

            if kpi == 'PSIRT': plot_fyq = False

            # reformat dates
            df_reformat = dataprep.reformat_df_dates(import_df, toolcfg,
                                                     importfromxl)

            # Set kpi chart text
            kpi_title = toolcfg["kpi"][kpi]["kpi_title"]

            # call separate process for BEMS (Escalations)
            if kpi == 'BEMS':
                process_bems_data(df_reformat, toolcfg, months_fyq_df,
                                  months_to_plot_df, kpi_title, end_fyq)
                continue

            # process data by project
            all_products = []
            df_all_by_month = None
            df_all_by_fyq = None

            for product in toolcfg["products"]:

                # get project code
                if product in ['CLIENT', 'meeting_apps']:
                    product_code = 'CMA'
                elif product in ['SERVER', 'meetingserver']:
                    product_code = 'CMS'
                else:  # management
                    product_code = 'CMM'

                if kpi == 'CFPD' and product_code == 'CMM':  # ignore CMM for CFPD ??
                    continue

                df_product = dataprep.get_product_data(df_reformat, product,
                                                       toolcfg, kpi)
                if df_product is None:
                    kpilog.warning("No data for {0}: {1}".format(
                        kpi, product_code))
                    continue

                kpilog.info("Processing {0} data for: {1}".format(
                    kpi, product_code))

                # get mttr days
                kpilog.debug("1. Calculate MTTR days....")
                mttr_df = dataprep.get_mttr_days(df_product, months_fyq_df,
                                                 toolcfg)

                # get open/closed counts
                kpilog.debug("2. Get open/closed counts....")
                df_open_grp, df_closed_grp = dataprep.get_product_counts(
                    df_product)

                # merge open/closed counts
                kpilog.debug("3. Merge open/closed/mttr data....")
                df_plot_data = dataprep.get_plot_data(df_open_grp,
                                                      df_closed_grp, mttr_df,
                                                      months_fyq_df)

                # perform mttr calc
                kpilog.debug("4. Perform MTTR calcs....")
                mttr_calcs = dataprep.get_mttr_calcs(df_plot_data,
                                                     product_code)

                #***********************
                # Monthly Product chart
                #***********************

                xaxis = "Months"

                kpilog.debug("5. Prepare monthly data and chart....")
                df_product_by_month = dataprep.group_counts_by_month(
                    df_plot_data, mttr_calcs, months_to_plot_df)

                chart_title = str.join(
                    ' ', [kpi_title.replace('XXX', product_code), 'Month\n'])
                kpi_chart = plotkpi.plot_kpi_chart(df_product_by_month,
                                                   product_code, chart_title,
                                                   kpi, xaxis)

                if kpi_chart:
                    kpilog.info("Monthly chart created: {}".format(kpi_chart))

                #**********************
                # FYQ Product chart
                #**********************

                if plot_fyq:
                    xaxis = 'FYQ'

                    kpilog.debug("6. Prepare FYQ data and chart....")
                    df_product_by_fyq = dataprep.group_counts_by_fyq(
                        df_plot_data, mttr_calcs, end_fyq)

                    chart_title = chart_title.replace('Month',
                                                      'Financial Quarter')
                    kpi_chart = plotkpi.plot_kpi_chart(df_product_by_fyq,
                                                       product_code,
                                                       chart_title, kpi, xaxis)

                    if kpi_chart:
                        kpilog.info("FYQ chart created: {}".format(kpi_chart))

                # store totals
                if all_products == []:

                    df_all_mttr = mttr_df
                    df_all_months = df_plot_data

                else:

                    columnlist = ["OpenCnt", "ClosedCnt", "OpenDefects"]

                    df_all_months = sum_df_columns(df_all_months, df_plot_data,
                                                   columnlist)
                    df_all_mttr.MTTR += mttr_df.MTTR

                all_products.append(product_code)

            #***********************
            # Monthly & FYQ Totals
            #***********************

            if not all_products == []:

                # perform mttr calc for al months
                kpilog.debug("7. Perform All MTTR calcs....")
                df_all_months = dataprep.merge_mttr(df_all_months, df_all_mttr,
                                                    True)
                mttr_calcs = dataprep.get_mttr_calcs(df_all_months)

                product_str = str.join(', ', all_products)

                #****************************
                # All Products Monthly chart
                #****************************

                kpilog.debug("8. Group all by month....")
                df_all_by_month = dataprep.group_counts_by_month(
                    df_all_months, mttr_calcs, months_to_plot_df)

                kpilog.debug("9. Chart All monthly....")

                chart_title = str.join(
                    ' ', [kpi_title.replace('XXX', product_str), 'Month\n'])

                kpi_chart = plotkpi.plot_kpi_chart(df_all_by_month,
                                                   product_str, chart_title,
                                                   kpi, 'AllMonths')
                if kpi_chart:
                    kpilog.info(
                        "All Months chart created: {}".format(kpi_chart))

                #****************************
                # All Products FYQ chart
                #****************************

                if plot_fyq:
                    kpilog.debug("10. Group all by FYQ....")
                    df_all_by_fyq = dataprep.group_counts_by_fyq(
                        df_all_months, mttr_calcs, end_fyq)

                    kpilog.debug("11. Chart All FYQ....")

                    chart_title = chart_title.replace('Month',
                                                      'Financial Quarter')

                    kpi_chart = plotkpi.plot_kpi_chart(df_all_by_fyq,
                                                       product_str,
                                                       chart_title, kpi,
                                                       'AllFYQ')
                    if kpi_chart:
                        kpilog.info(
                            "All FYQ chart created: {}".format(kpi_chart))

    return None