예제 #1
0
from model import Model
from options import TrainOptions
import torch
from torchvision.transforms import *
import torch.optim as optim
import numpy as np 
from visualizer import Visualizer
import os
# Get the Hyperparaeters 
opt = TrainOptions().parse()

import matplotlib.pyplot as plt

sample_dataset = DataSet(opt,"./dataset/T1-train/img/", "./dataset/T1-train/GT/T1-GT.xml","./dataset/T2-Train/img/" )

train_sampler,val_sampler = create_samplers(sample_dataset.__len__(),opt.split_ratio)
sample_loader = torch.utils.data.DataLoader(sample_dataset,sampler=train_sampler,batch_size=opt.batch_size,num_workers=opt.workers)
sample_val_loader = torch.utils.data.DataLoader(sample_dataset,sampler=val_sampler,batch_size=opt.val_batch_size,num_workers=opt.workers//5,shuffle=False)

# Check if gpu available or not
device = torch.device("cuda" if (torch.cuda.is_available() and opt.use_gpu) else "cpu")
opt.device = device

# Load the model and send it to gpu
model = Model(opt)
model = model.to(device)
if opt.use_gpu:	
	model = torch.nn.DataParallel(model, device_ids=opt.gpus)

# Print our model 
print('------------ Model -------------')
예제 #2
0
# Main module to train the model, load the data,
# do gradient descent etc. followed by saving our model for later testing
from dataloader import DataSet, create_samplers
from model import Model
from visualizer import Visualizer
from options import TrainOptions
import torch
from torchvision.transforms import *
import torch.optim as optim
import numpy as np
import os
# Get the Hyperparaeters
opt = TrainOptions().parse()

sample_dataset = DataSet(opt, "/media/shubh/PranayHDD/Kinect/")
train_sampler, val_sampler = create_samplers(sample_dataset.__len__(),
                                             opt.split_ratio)
data_loader = torch.utils.data.DataLoader(sample_dataset,
                                          sampler=train_sampler,
                                          batch_size=opt.batch_size,
                                          num_workers=opt.num_workers)
data_val_loader = torch.utils.data.DataLoader(sample_dataset,
                                              sampler=val_sampler,
                                              batch_size=opt.val_batch_size,
                                              num_workers=0,
                                              shuffle=False)

# Check if gpu available or not
device = torch.device("cuda" if (
    torch.cuda.is_available() and opt.use_gpu) else "cpu")
opt.device = device