def loop(): n = 0 while True: yield n n += 1 if __name__ == "__main__": webcam = args.webcam mode = args.mode if not os.path.exists(args.outputpath): os.mkdir(args.outputpath) # Load input video fvs = WebcamLoader(webcam).start() (fourcc, fps, frameSize) = fvs.videoinfo() # Data writer save_path = os.path.join(args.outputpath, 'AlphaPose_webcam' + webcam + '.avi') writer = DataWriter(args.save_video, save_path, cv2.VideoWriter_fourcc(*'XVID'), fps, frameSize).start() # Load YOLO model print('Loading YOLO model..') sys.stdout.flush() det_model = Darknet("yolo/cfg/yolov3.cfg") det_model.load_weights('models/yolo/yolov3.weights') det_model.net_info['height'] = args.inp_dim det_inp_dim = int(det_model.net_info['height'])
while True: yield n n += 1 if __name__ == '__main__': url_1 = "rtsp://*****:*****@192.168.200.253:554/Streaming/Channels/101" url_2 = "rtsp://*****:*****@192.168.200.253:554/Streaming/Channels/301" num_cam = 2 webcam = args.webcam if not os.path.exists(args.outputpath): os.mkdir(args.outputpath) # Load input video fvs_0 = WebcamLoader(url_1).start() fvs_1 = WebcamLoader(url_2).start() (fourcc, fps, frameSize) = fvs_0.videoinfo() # read the camera parameter of this dataset # with open ( opt.camera_parameter_path,'rb' ) as f: # camera_parameter = pickle.load (f) # Data writer save_path = os.path.join(args.outputpath, 'AlphaPose_webcam' + webcam + '.avi') writer = DataWriter(args.save_video, save_path, cv2.VideoWriter_fourcc(*'XVID'), fps, frameSize).start()
img, orig_img, dim = prep_frame(frame, inp_dim) im_dim_list = torch.FloatTensor([dim]).repeat(1, 2) return img, orig_img, dim, im_dim_list if __name__ == '__main__': url_1 = "rtsp://*****:*****@192.168.200.253:554/Streaming/Channels/101" url_2 = "rtsp://*****:*****@192.168.200.253:554/Streaming/Channels/301" num_cam = 2 webcam = args.webcam if not os.path.exists(args.outputpath): os.mkdir(args.outputpath) # Load input video fvs_0 = WebcamLoader(url_1).start() fvs_1 = WebcamLoader(url_2).start() # detection module print('Loading detection model ') sys.stdout.flush() det_model = inference.yolo_detecter() # pose module print('Loading pose model') sys.stdout.flush() pose_model = inference.pose_detection() print('Starting webcam demo, press Ctrl + C to terminate...') sys.stdout.flush() im_names_desc = loop() # tqdm(loop())
def isfull(self): return self.Q.full() if __name__ == '__main__': url_1 = "rtsp://*****:*****@192.168.200.253:554/Streaming/Channels/101" # url_1 = 0 url_2 = "rtsp://*****:*****@192.168.200.253:554/Streaming/Channels/301" # url_2 = 0 webcam = args.webcam if not os.path.exists(args.outputpath): os.mkdir(args.outputpath) # Load input video fvs_0 = WebcamLoader(url_1).start() fvs_1 = WebcamLoader(url_2).start() (fourcc, fps1, frameSize1) = fvs_0.videoinfo() (fourcc, fps2, frameSize2) = fvs_1.videoinfo() # read the camera parameter of this dataset # with open ( opt.camera_parameter_path,'rb' ) as f: # camera_parameter = pickle.load (f) # detection module print('Loading detection model ') sys.stdout.flush() det_loader_1 = DetectionLoader(fvs_0, batchSize=1).start() det_loader_2 = DetectionLoader(fvs_1, batchSize=1).start() save_path = os.path.join(args.outputpath,