def __init__(self,config): self.config=config['learning_config'] self.am = AM(config) self.am.load_model(training=True) if self.am.model_type!='MultiTask': self.dg = AM_DataLoader(config) else: self.dg=MultiTask_DataLoader(config) self.dg.speech_config['reduction_factor']=self.am.model.time_reduction_factor self.dg.load_state(self.config['running_config']['outdir']) if self.am.model_type=='CTC': self.runner = ctc_runners.CTCTrainer(self.dg.speech_featurizer,self.dg.text_featurizer,self.config['running_config']) elif self.am.model_type=='LAS': self.runner=las_runners.LASTrainer(self.dg.speech_featurizer,self.dg.text_featurizer,self.config['running_config']) self.dg.LAS=True elif self.am.model_type == 'MultiTask': self.runner = multi_runners.MultiTaskLASTrainer(self.dg.speech_featurizer, self.dg.token4_featurizer, self.config['running_config']) else: self.runner = transducer_runners.TransducerTrainer(self.dg.speech_featurizer,self.dg.text_featurizer,self.config['running_config'] ) self.STT = self.am.model if self.dg.augment.available(): factor=2 else: factor=1 self.opt = tf.keras.optimizers.Adamax(**config['optimizer_config']) self.runner.set_total_train_steps(self.dg.get_per_epoch_steps() * self.config['running_config']['num_epochs']*factor) self.runner.compile(self.STT,self.opt) self.dg.batch=self.runner.global_batch_size
class AM_Tester(): def __init__(self, config): self.config = config['learning_config'] self.am = AM(config) self.am.load_model(training=False) if self.am.model_type != 'MultiTask': self.dg = AM_DataLoader(config, training=False) self.runner = am_tester.AMTester( self.config['running_config'], self.dg.text_featurizer, streaming=config['speech_config']['streaming']) else: self.dg = MultiTask_DataLoader(config, training=False) self.runner = multi_task_tester.MultiTaskTester( self.config['running_config'], self.dg.token3_featurizer) self.STT = self.am.model self.runner.set_progbar(self.dg.eval_per_epoch_steps()) self.runner.set_all_steps(self.dg.eval_per_epoch_steps()) self.runner.compile(self.STT) def make_eval_batch_data(self): batches = [] for _ in range( self.config['running_config']['eval_steps_per_batches']): if self.am.model_type != 'MultiTask': features, input_length, labels, label_length = self.dg.eval_data_generator( ) input_length = np.expand_dims(input_length, -1) batches.append((features, input_length, labels, label_length)) else: speech_features, input_length, words_label, words_label_length, phone_label, phone_label_length, py_label, py_label_length = self.dg.eval_data_generator( ) input_length = np.expand_dims(input_length, -1) batches.append((speech_features, input_length, py_label)) return batches def test(self): while 1: eval_batches = self.make_eval_batch_data() # print('now',self.dg.offset) self.runner.run(eval_batches) if self.dg.offset > len(self.dg.test_list) - 1: break
def __init__(self, config): self.config = config['learning_config'] self.config['running_config'].update( {'streaming': config['speech_config']['streaming']}) self.am = AM(config) self.am.load_model(training=True) if self.am.model_type != 'MultiTask': self.dg = AM_DataLoader(config) else: self.dg = MultiTask_DataLoader(config) self.dg.speech_config[ 'reduction_factor'] = self.am.model.time_reduction_factor self.dg.load_state(self.config['running_config']['outdir']) if self.am.model_type == 'CTC': self.runner = ctc_runners.CTCTrainer(self.dg.speech_featurizer, self.dg.text_featurizer, self.config['running_config']) elif self.am.model_type == 'LAS': self.runner = las_runners.LASTrainer(self.dg.speech_featurizer, self.dg.text_featurizer, self.config['running_config']) self.dg.LAS = True elif self.am.model_type == 'MultiTask': self.runner = multi_runners.MultiTaskCTCTrainer( self.dg.speech_featurizer, self.config['running_config']) else: self.runner = transducer_runners.TransducerTrainer( self.dg.speech_featurizer, self.dg.text_featurizer, self.config['running_config']) self.STT = self.am.model if self.dg.augment.available(): factor = 2 else: factor = 1 all_train_step = self.dg.get_per_epoch_steps( ) * self.config['running_config']['num_epochs'] * factor lr = CustomSchedule(config['model_config']['dmodel'], warmup_steps=int(all_train_step * 0.1)) config['optimizer_config']['learning_rate'] = lr self.opt = tf.keras.optimizers.Adam(**config['optimizer_config']) self.runner.set_total_train_steps(all_train_step) self.runner.compile(self.STT, self.opt) self.dg.batch = self.runner.global_batch_size
def __init__(self,config): self.config=config['learning_config'] self.am = AM(config) self.am.load_model(training=False) f,c=self.am.speech_feature.compute_feature_dim() self.am.model.return_pb_function(f,c) if self.am.model_type!='MultiTask': self.dg = AM_DataLoader(config,training=False) self.runner = am_tester.AMTester(self.config['running_config'], self.dg.text_featurizer) else: self.dg=MultiTask_DataLoader(config,training=False) self.runner=multi_task_tester.MultiTaskTester(self.config['running_config'],self.dg.token3_featurizer,self.dg.token4_featurizer) self.STT = self.am.model self.runner.set_progbar(self.dg.eval_per_epoch_steps()) self.runner.compile(self.STT)
def __init__(self, config): self.config = config['learning_config'] self.am = AM(config) self.am.load_model(training=False) if self.am.model_type != 'MultiTask': self.dg = AM_DataLoader(config, training=False) self.runner = am_tester.AMTester( self.config['running_config'], self.dg.text_featurizer, streaming=config['speech_config']['streaming']) else: self.dg = MultiTask_DataLoader(config, training=False) self.runner = multi_task_tester.MultiTaskTester( self.config['running_config'], self.dg.token3_featurizer) self.STT = self.am.model self.runner.set_progbar(self.dg.eval_per_epoch_steps()) self.runner.set_all_steps(self.dg.eval_per_epoch_steps()) self.runner.compile(self.STT)
class AM_Trainer(): def __init__(self, config): self.config = config['learning_config'] self.am = AM(config) self.am.load_model(training=True) if self.am.model_type != 'MultiTask': self.dg = AM_DataLoader(config) else: self.dg = MultiTask_DataLoader(config) self.dg.speech_config[ 'reduction_factor'] = self.am.model.time_reduction_factor self.dg.load_state(self.config['running_config']['outdir']) if self.am.model_type == 'CTC': self.runner = ctc_runners.CTCTrainer(self.dg.speech_featurizer, self.dg.text_featurizer, self.config['running_config']) elif self.am.model_type == 'LAS': self.runner = las_runners.LASTrainer(self.dg.speech_featurizer, self.dg.text_featurizer, self.config['running_config']) self.dg.LAS = True elif self.am.model_type == 'MultiTask': self.runner = multi_runners.MultiTaskLASTrainer( self.dg.speech_featurizer, self.dg.token4_featurizer, self.config['running_config']) else: self.runner = transducer_runners.TransducerTrainer( self.dg.speech_featurizer, self.dg.text_featurizer, self.config['running_config']) self.STT = self.am.model if self.dg.augment.available(): factor = 2 else: factor = 1 self.opt = tf.keras.optimizers.Adamax(**config['optimizer_config']) self.runner.set_total_train_steps( self.dg.get_per_epoch_steps() * self.config['running_config']['num_epochs'] * factor) self.runner.compile(self.STT, self.opt) self.dg.batch = self.runner.global_batch_size def load_checkpoint(self, config, model): """Load checkpoint.""" self.checkpoint_dir = os.path.join( config['learning_config']['running_config']["outdir"], "checkpoints") files = os.listdir(self.checkpoint_dir) files.sort(key=lambda x: int(x.split('_')[-1].replace('.h5', ''))) model.load_weights(os.path.join(self.checkpoint_dir, files[-1])) self.init_steps = int(files[-1].split('_')[-1].replace('.h5', '')) def recevie_data(self, r): data = r.rpop(self.config['data_name']) data = eval(data) trains = [] for key in self.config['data_dict_key']: x = data[key] dtype = data['%s_dtype' % key] shape = data['%s_shape' % key] x = np.frombuffer(x, dtype) x = x.reshape(shape) trains.append(x) return trains def train(self): if self.am.model_type != 'MultiTask': train_datasets = tf.data.Dataset.from_generator( self.dg.generator, self.dg.return_data_types(), self.dg.return_data_shape(), args=(True, )) eval_datasets = tf.data.Dataset.from_generator( self.dg.generator, self.dg.return_data_types(), self.dg.return_data_shape(), args=(False, )) self.runner.set_datasets(train_datasets, eval_datasets) else: self.runner.set_datasets(self.dg.generator(True), self.dg.generator(False)) while 1: self.runner.fit(epoch=self.dg.epochs) if self.runner._finished(): self.runner.save_checkpoint() logging.info('Finish training!') break if self.runner.steps % self.config['running_config'][ 'save_interval_steps'] == 0: self.dg.save_state(self.config['running_config']['outdir'])
class AM_Trainer(): def __init__(self, config): self.config = config['learning_config'] self.am = AM(config) self.am.load_model(training=True) if self.am.model_type != 'MultiTask': self.dg = AM_DataLoader(config) else: self.dg = MultiTask_DataLoader(config) self.dg.speech_config[ 'reduction_factor'] = self.am.model.time_reduction_factor self.dg.load_state(self.config['running_config']['outdir']) if self.am.model_type == 'CTC': self.runner = ctc_runners.CTCTrainer(self.dg.speech_featurizer, self.dg.text_featurizer, self.config['running_config']) elif self.am.model_type == 'LAS': self.runner = las_runners.LASTrainer(self.dg.speech_featurizer, self.dg.text_featurizer, self.config['running_config']) self.dg.LAS = True elif self.am.model_type == 'MultiTask': self.runner = multi_runners.MultiTaskLASTrainer( self.dg.speech_featurizer, self.dg.token4_featurizer, self.config['running_config']) else: self.runner = transducer_runners.TransducerTrainer( self.dg.speech_featurizer, self.dg.text_featurizer, self.config['running_config']) self.STT = self.am.model if self.dg.augment.available(): factor = 2 else: factor = 1 all_train_step = self.dg.get_per_epoch_steps( ) * self.config['running_config']['num_epochs'] * factor lr = CustomSchedule(config['model_config']['dmodel'], warmup_steps=int(all_train_step * 0.1)) config['optimizer_config']['learning_rate'] = lr self.opt = tf.keras.optimizers.Adamax(**config['optimizer_config']) self.runner.set_total_train_steps(all_train_step) self.runner.compile(self.STT, self.opt) self.dg.batch = self.runner.global_batch_size def recevie_data(self, r): data = r.rpop(self.config['data_name']) data = eval(data) trains = [] for key in self.config['data_dict_key']: x = data[key] dtype = data['%s_dtype' % key] shape = data['%s_shape' % key] x = np.frombuffer(x, dtype) x = x.reshape(shape) trains.append(x) return trains def train(self): if self.am.model_type != 'MultiTask': train_datasets = tf.data.Dataset.from_generator( self.dg.generator, self.dg.return_data_types(), self.dg.return_data_shape(), args=(True, )) eval_datasets = tf.data.Dataset.from_generator( self.dg.generator, self.dg.return_data_types(), self.dg.return_data_shape(), args=(False, )) self.runner.set_datasets(train_datasets, eval_datasets) else: self.runner.set_datasets(self.dg.generator(True), self.dg.generator(False)) while 1: self.runner.fit(epoch=self.dg.epochs) if self.runner._finished(): self.runner.save_checkpoint() logging.info('Finish training!') break if self.runner.steps % self.config['running_config'][ 'save_interval_steps'] == 0: self.dg.save_state(self.config['running_config']['outdir'])