from dataloaders.saliency_detection.DUTS import DUTS from models.PFAN.model import PFAN as Model from models.PFAN.loss import EdgeSaliencyLoss from torch.utils.data import DataLoader from constant import DEVICE, LEARNING_RATE, ITERATION_SIZE, WEIGHT_DECAY, TMP_ROOT from utils.StatisticalValue import StatisticalValue from utils.functions.status import print_training_status from env import iteration_writer from torchvision import transforms from os.path import join import torch import torchvision import numpy as np import os trainloader = DataLoader(DUTS(train=True, ), batch_size=6, shuffle=False, num_workers=8) model = Model() model.to(device=DEVICE) criterion = EdgeSaliencyLoss(device=DEVICE) mae = torch.nn.L1Loss() optimizer = torch.optim.Adam(model.parameters(), lr=0.0004, weight_decay=0) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1) def run(epoch):
from constant import DEVICE, LEARNING_RATE, ITERATION_SIZE, WEIGHT_DECAY, TMP_ROOT from utils.StatisticalValue import StatisticalValue from utils.functions.status import print_training_status from env import iteration_writer from torchvision import transforms from os.path import join import time import torch import torchvision import numpy as np import os trainloader = DataLoader( DUTS( train=False, augment=False, coordinate=False, ), batch_size=10, shuffle=False, num_workers=8 ) model = Model() model.to(device=DEVICE) criterion = saliency_loss mae = torch.nn.L1Loss() def run(): statistical_losses = StatisticalValue()
from models.RACNN.loss import saliency_loss from models.PFAN.loss import EdgeSaliencyLoss from torch.utils.data import DataLoader from constant import DEVICE, LEARNING_RATE, ITERATION_SIZE, WEIGHT_DECAY, TMP_ROOT from utils.StatisticalValue import StatisticalValue from utils.functions.status import print_training_status from env import iteration_writer from torchvision import transforms from os.path import join import torch import torchvision import numpy as np import os trainloader = DataLoader(DUTS( train=True, coordinate=False, ), batch_size=10, shuffle=False, num_workers=8) model = Model() model.to(device=DEVICE) # state_dict = torch.load( # '/home/ncrc-super/data/Liangchen/Experiments/tasks/pretrain_unet_saliency_detection/__tmp__/2020-12-21-21-34-50/checkpoints/checkpoint_153_1.pth', # map_location=DEVICE # )['state_dict'] # new_state_dict = {} # for key in state_dict: # new_state_dict[key.replace('unet.', '')] = state_dict[key]
from torch.utils.data import DataLoader from constant import DEVICE, LEARNING_RATE, WEIGHT_DECAY, TMP_ROOT from utils.StatisticalValue import StatisticalValue from utils.functions.status import print_training_status from env import iteration_writer from torchvision import transforms from os.path import join import torch import torchvision import numpy as np import os trainloader = DataLoader( DUTS( train=True, augment=True, coordinate=False ), batch_size=5, shuffle=False, num_workers=8 ) testloader = DataLoader( DUTS( train=False, augment=False, coordinate=False, ), batch_size=10, shuffle=False, num_workers=8
from torch.utils.data import DataLoader from constant import DEVICE, LEARNING_RATE, ITERATION_SIZE, WEIGHT_DECAY, TMP_ROOT from utils.StatisticalValue import StatisticalValue from utils.functions.status import print_training_status from env import iteration_writer from torchvision import transforms from os.path import join import time import torch import torchvision import numpy as np import os trainloader = DataLoader(DUTS( train=False, augment=False, coordinate=False, ), batch_size=10, shuffle=False, num_workers=8) model = Model() model.to(device=DEVICE) state_dict = torch.load( '/home/ncrc-super/data/Liangchen/Experiments/tasks/pretrain_detection/__tmp__/2021-01-11-14-35-41/checkpoints/checkpoint_17_1.pth', map_location=DEVICE)['state_dict'] model.rcnn.rcnn.load_state_dict(state_dict) criterion = saliency_loss
from models.SOD.PFAN_OD.model import PFAN_OD from models.PFAN.loss import EdgeSaliencyLoss from torch.utils.data import DataLoader from constant import DEVICE, LEARNING_RATE, WEIGHT_DECAY, TMP_ROOT from utils.StatisticalValue import StatisticalValue from utils.functions.status import print_training_status from env import iteration_writer from torchvision import transforms from os.path import join import torch import torchvision import numpy as np import os import time trainloader = DataLoader(DUTS(train=True, augment=True, coordinate=False), batch_size=5, shuffle=False, num_workers=8) testloader = DataLoader(DUTS( train=False, augment=False, coordinate=False, ), batch_size=10, shuffle=False, num_workers=8) model = PFAN_OD(mode='train_local') model.to(device=DEVICE)
from models.PFAN.loss import EdgeSaliencyLoss from torch.utils.data import DataLoader from constant import DEVICE, LEARNING_RATE, ITERATION_SIZE, WEIGHT_DECAY, TMP_ROOT from utils.StatisticalValue import StatisticalValue from utils.functions.status import print_training_status from env import iteration_writer from torchvision import transforms from os.path import join import time import torch import torchvision import numpy as np import os trainloader = DataLoader(DUTS( train=False, augment=False, ), batch_size=1, shuffle=False, num_workers=8) model = Model() model.to(device=DEVICE) criterion = EdgeSaliencyLoss(device=DEVICE) mae = torch.nn.L1Loss() def run(): statistical_losses = StatisticalValue() statistical_mae_errors = StatisticalValue()