예제 #1
0
def train_net(config):
    # enable cudnn
    cudnn.benchmark = True

    data_loader = get_loader(config)
    solver = Solver(config, data_loader=data_loader, device="cuda")
    solver.train()
예제 #2
0
def train_net():
    # enable cudnn
    cudnn.benchmark = True

    data_loader = get_loader(dataset_config, config, mode="train")
    solver = Solver_makeupGAN(config, data_loader=data_loader, device="cuda")
    solver.train()
예제 #3
0
def train_net(config):
    # enable cudnn  https://zhuanlan.zhihu.com/p/73711222
    cudnn.benchmark = True

    data_loader = get_loader(config)
    #solver = Solver(config, data_loader=data_loader, device="cuda")
    solver = Solver(config, data_loader=data_loader, device=config.device)
    solver.train()
def train_net():
    # enable cudnn
    cudnn.benchmark = True

    data_loaders = get_loader(config, mode="train")  # return train&test
    #get the solver
    if args.model == 'cycleGAN':
        solver = Solver_cycleGAN(data_loaders, config, dataset_config)
    elif args.model == 'makeupGAN':
        solver = Solver_makeupGAN(data_loaders, config, dataset_config)
    else:
        print("model that not support")
        exit()
    solver.train()
예제 #5
0
def tes_net():
    # enable cudnn
    cudnn.benchmark = True

    # get the DataLoader
    data_loaders = get_loader(dataset_config, config, mode="test")

    #get the solver
    if args.model == 'cycleGAN':
        solver = Solver_cycleGAN(data_loaders, config, dataset_config)
    elif args.model =='makeupGAN':
        solver = Solver_makeupGAN(data_loaders, config, dataset_config)
    else:
        print("model that not support")
        exit()
    solver.test()
예제 #6
0
def train_net():
    # enable cudnn
    cudnn.benchmark = True
    data_loaders = get_loader(dataset_config, config, mode="train")
    solver = Solver_PSGAN(data_loaders, config, dataset_config)
    solver.train()
예제 #7
0
from config import config, dataset_config
from dataloder import get_loader
from psgan.inference import Inference
from setup import setup_config, setup_argparser
import numpy as np
import neupeak.utils.webcv2 as cv2

args = setup_argparser().parse_args()
config = setup_config(args)
loader = get_loader(config)
inference = Inference(config)

for source_input, reference_input in loader:

    ret = inference.solver.test(*source_input, *reference_input)

    source = (source_input[0].squeeze(0).squeeze(0).numpy().transpose(1, 2, 0)
              + 1) / 2
    reference = (reference_input[0].squeeze(0).squeeze(0).numpy().transpose(
        1, 2, 0) + 1) / 2
    mask_s = (source_input[1][0, :, 0].numpy().transpose(1, 2, 0) * 255 +
              0.5).astype(np.uint8)
    mask_r = (
        reference_input[1][0, :, 0].squeeze(2).numpy().transpose(1, 2, 0) * 255
        + 0.5).astype(np.uint8)
    cv2.imshow("source", source[..., ::-1])
    cv2.imshow("reference", reference[..., ::-1])
    cv2.imshow("mask_s", mask_s)
    cv2.imshow("mask_r", mask_r)
    cv2.imshow("ret", np.asarray(ret)[..., ::-1])
    cv2.waitKey()