def test_correct_total_sample_size_and_counts_and_mutability(self):
        data = [['test1', 1.0], ['test2', 2.0], ['test3', 3.0], [None, None],
                ['test5', 5.0], ['test6', 6.0], [None, None], ['test7', 7.0]]
        data = pd.DataFrame(data, columns=['NAME', 'VALUE'])
        profiler_options = ProfilerOptions()
        profiler_options.set({'data_labeler.is_enabled': False})

        col_one_len = len(data['NAME'])
        col_two_len = len(data['VALUE'])

        # Test reloading data, ensuring immutable
        for i in range(2):

            # Profile Once
            data.index = pd.RangeIndex(0, 8)
            profile = dp.Profiler(data,
                                  profiler_options=profiler_options,
                                  samples_per_update=2)

            # Profile Twice
            data.index = pd.RangeIndex(8, 16)
            profile.update_profile(data)

            # rows sampled are [5, 6], [13, 14] (0 index)
            self.assertEqual(16, profile.total_samples)
            self.assertEqual(4, profile._max_col_samples_used)
            self.assertEqual(2, profile.row_has_null_count)
            self.assertEqual(0.5, profile._get_row_has_null_ratio())
            self.assertEqual(2, profile.row_is_null_count)
            self.assertEqual(0.5, profile._get_row_is_null_ratio())
            self.assertEqual(0.4375, profile._get_unique_row_ratio())
            self.assertEqual(9, profile._get_duplicate_row_count())

        self.assertEqual(col_one_len, len(data['NAME']))
        self.assertEqual(col_two_len, len(data['VALUE']))
    def test_correct_rows_ingested(self):
        test_dict = {
            '1': ['nan', 'null', None, None, ''],
            1: ['nan', 'None', 'null', None, ''],
        }
        test_dataset = pd.DataFrame(data=test_dict)
        profiler_options = ProfilerOptions()
        profiler_options.set({'data_labeler.is_enabled': False})
        trained_schema = dp.Profiler(test_dataset,
                                     len(test_dataset),
                                     profiler_options=profiler_options)

        self.assertCountEqual(['', 'nan', 'None', 'null'],
                              trained_schema.profile['1'].null_types)
        self.assertEqual(5, trained_schema.profile['1'].null_count)
        self.assertEqual({
            '': {4},
            'nan': {0},
            'None': {2, 3},
            'null': {1}
        }, trained_schema.profile['1'].null_types_index)
        self.assertCountEqual(['', 'nan', 'None', 'null'],
                              trained_schema.profile[1].null_types)
        self.assertEqual(5, trained_schema.profile[1].null_count)
        self.assertEqual({
            '': {4},
            'nan': {0},
            'None': {1, 3},
            'null': {2}
        }, trained_schema.profile[1].null_types_index)
    def test_sample_size_passed_to_profile(self, *mocks):

        update_mock = mocks[0]

        # data setup
        data = pd.DataFrame([0] * int(50e3))

        # option setup
        profiler_options = ProfilerOptions()
        profiler_options.structured_options.multiprocess.is_enabled = False
        profiler_options.set({'data_labeler.is_enabled': False})

        # test data size < min_sample_size = 5000 by default
        profiler = dp.Profiler(data[:1000], profiler_options=profiler_options)
        profiler._min_sample_size = 5000
        profiler._sampling_ratio = 0.2
        self.assertEqual(1000, update_mock.call_args[0][1])

        # test data size * 0.20 < min_sample_size < data size
        profiler = dp.Profiler(data[:10000], profiler_options=profiler_options)
        profiler._min_sample_size = 5000
        profiler._sampling_ratio = 0.2
        self.assertEqual(5000, update_mock.call_args[0][1])

        # test min_sample_size > data size * 0.20
        profiler = dp.Profiler(data, profiler_options=profiler_options)
        profiler._min_sample_size = 5000
        profiler._sampling_ratio = 0.2
        self.assertEqual(10000, update_mock.call_args[0][1])
    def setUpClass(cls):

        cls.input_file_path = os.path.join(test_root_path, 'data',
                                           'csv/aws_honeypot_marx_geo.csv')
        cls.aws_dataset = pd.read_csv(cls.input_file_path)
        profiler_options = ProfilerOptions()
        profiler_options.set({'data_labeler.is_enabled': False})
        cls.trained_schema = dp.Profiler(cls.aws_dataset,
                                         len(cls.aws_dataset),
                                         profiler_options=profiler_options)
    def test_correct_null_row_counts(self):
        file_path = os.path.join(test_root_path, 'data', 'csv/empty_rows.txt')
        data = pd.read_csv(file_path)
        profiler_options = ProfilerOptions()
        profiler_options.set({'data_labeler.is_enabled': False})
        profile = dp.Profiler(data, profiler_options=profiler_options)
        self.assertEqual(2, profile.row_has_null_count)
        self.assertEqual(0.25, profile._get_row_has_null_ratio())
        self.assertEqual(2, profile.row_is_null_count)
        self.assertEqual(0.25, profile._get_row_is_null_ratio())

        file_path = os.path.join(test_root_path, 'data','csv/iris-with-null-rows.csv')
        data = pd.read_csv(file_path)
        profile = dp.Profiler(data, profiler_options=profiler_options)
        self.assertEqual(13, profile.row_has_null_count)
        self.assertEqual(13/24, profile._get_row_has_null_ratio())
        self.assertEqual(3, profile.row_is_null_count)
        self.assertEqual(3/24, profile._get_row_is_null_ratio())
    def test_null_in_file(self):
        filename_null_in_file = os.path.join(
            test_root_path, 'data', 'csv/sparse-first-and-last-column.txt')
        profiler_options = ProfilerOptions()
        profiler_options.set({'data_labeler.is_enabled': False})
        data = dp.Data(filename_null_in_file)
        profile = dp.Profiler(data, profiler_options=profiler_options)

        report = profile.report(report_options={"output_format":"pretty"})
        
        self.assertEqual(
            report['data_stats']['COUNT']['statistics']['null_types_index'],
            {'': '[2, 3, 4, 5, 7, 8]'}
        )
        
        self.assertEqual(
            report['data_stats'][' NUMBERS']['statistics']['null_types_index'],
            {'': '[5, 6, 8]', ' ': '[2, 4]'}
        )
예제 #7
0
 def get_options(self, **params):
     options = ProfilerOptions()
     options.set(params)
     return options