예제 #1
0
def main(args):

    network = importlib.import_module(args.model_def)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    # Write arguments to a text file
    facenet.write_arguments_to_file(args, os.path.join(log_dir,
                                                       'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    # src_path,_ = os.path.split(os.path.realpath(__file__))
    # facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)

    # Fetch dataets
    # VGGface2
    print('Fetch VGGface2 as source dataset at {}'.format(
        args.vggface2_train_dir))
    src_train_set = facenet.get_dataset(args.vggface2_train_dir)
    # validation_set = facenet.get_dataset(args.vggface2_val_dir)

    # COX S2V
    print('Fetch COX-S2V as target dataset at {}'.format(args.cox_video_dir))

    cox_dataset = cox.cox_data(args.cox_still_dir, args.cox_video_dir,
                               args.cox_pairs)

    train_folds = [0, 1, 2]
    evaluation_folds = [3, 4, 5, 6, 7, 8, 9]

    # cox_train_list = cox_dataset.get_dataset(train_folds)
    # cox_val_list = list(itertools.chain.from_iterable(fold_list[3:10]))
    tgt_train_set = cox_dataset.get_dataset(train_folds, video_only=True)
    # tgt_val_set = cox.get_video_dataset(args.cox_video_dir, cox_val_list)

    cox_paths, cox_issame = cox_dataset.get_pairs(evaluation_folds)

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    if args.pretrained_model:
        print('Pre-trained model: %s' %
              os.path.expanduser(args.pretrained_model))

    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(
            os.path.expanduser(args.lfw_dir), pairs)
        # Get the paths for embeddings projection

    # Get the paths for embeddings projection

    lfw_proj_paths, lfw_proj_labels = lfw.get_paths_from_file(
        args.lfw_dir, args.lfw_projection)

    cox_proj_paths, cox_proj_labels = cox_dataset.get_paths_from_file(
        args.cox_projection)

    # Combine projection paths
    projection_paths = lfw_proj_paths + cox_proj_paths
    proj_labels = lfw_proj_labels + cox_proj_labels

    # Create label map if does not exist
    metadata_filename = 'meta.tsv'
    emb_dir = os.path.join(os.path.expanduser(log_dir), 'emb')
    if not os.path.isdir(
            emb_dir):  # Create the log directory if it doesn't exist
        os.makedirs(emb_dir)
    with open(os.path.join(emb_dir, metadata_filename), "w") as meta_file:
        csvWriter = csv.writer(meta_file, delimiter='\t')
        csvWriter.writerows(np.array([proj_labels]).T)

    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)

        # Placeholder for the learning rate
        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')

        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')

        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        image_paths_placeholder = tf.placeholder(tf.string,
                                                 shape=(None, 4),
                                                 name='image_paths')
        labels_placeholder = tf.placeholder(tf.int64,
                                            shape=(None, 4),
                                            name='labels')

        input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                              dtypes=[tf.string, tf.int64],
                                              shapes=[(4, ), (4, )],
                                              shared_name=None,
                                              name=None)
        enqueue_op = input_queue.enqueue_many(
            [image_paths_placeholder, labels_placeholder])

        nrof_preprocess_threads = 4
        images_and_labels = []
        for _ in range(nrof_preprocess_threads):
            filenames, label = input_queue.dequeue()
            images = []
            for filename in tf.unstack(filenames):
                file_contents = tf.read_file(filename)
                image = tf.image.decode_image(file_contents, channels=3)

                if args.random_crop:
                    image = tf.random_crop(
                        image, [args.image_size, args.image_size, 3])
                else:
                    image = tf.image.resize_image_with_crop_or_pad(
                        image, args.image_size, args.image_size)
                if args.random_flip:
                    image = tf.image.random_flip_left_right(image)

                #pylint: disable=no-member
                image.set_shape((args.image_size, args.image_size, 3))
                images.append(tf.image.per_image_standardization(image))
            images_and_labels.append([images, label])

        image_batch, labels_batch = tf.train.batch_join(
            images_and_labels,
            batch_size=batch_size_placeholder,
            shapes=[(args.image_size, args.image_size, 3), ()],
            enqueue_many=True,
            capacity=4 * nrof_preprocess_threads * args.batch_size,
            allow_smaller_final_batch=True)
        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        labels_batch = tf.identity(labels_batch, 'label_batch')

        # Build the inference graph
        prelogits, _ = network.inference(
            image_batch,
            args.keep_probability,
            phase_train=phase_train_placeholder,
            bottleneck_layer_size=args.embedding_size,
            weight_decay=args.weight_decay)

        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
        # Split embeddings into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative, target = tf.unstack(
            tf.reshape(embeddings, [-1, 4, args.embedding_size]), 4, 1)
        loss, adv_loss, triplet_loss = adversarialloss.quadruplets_loss(
            anchor, positive, negative, target, args.alpha, args.lamb,
            args.zeta)
        # triplet_loss = tripletloss.triplet_loss(anchor, positive, negative, args.alpha)
        # adv_loss = adversarialloss.adversarial_loss(anchor, target, args.alpha)

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the total losses
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([loss] + regularization_losses,
                              name='total_loss')
        reg_loss = tf.add_n(regularization_losses, name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer,
                                 learning_rate, args.moving_average_decay,
                                 tf.global_variables())

        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        # summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        # Initialize variables
        sess.run(tf.global_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})
        sess.run(tf.local_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})

        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
                saver.restore(sess, os.path.expanduser(args.pretrained_model))

            # Training and validation loop
            epoch = 0
            while epoch < args.max_nrof_epochs:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // args.epoch_size

                # save_embeddings(sess, projection_paths, epoch, embeddings, labels_batch, image_paths_placeholder,
                #                 labels_placeholder,
                #                 batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op,
                #                 args.batch_size, emb_dir, args.embedding_size, tag='lfw')
                #
                # # Evaluate on COX
                # evaluate(sess, cox_paths, embeddings, labels_batch, image_paths_placeholder,
                #          labels_placeholder,
                #          batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder,
                #          enqueue_op,
                #          cox_issame, args.batch_size,
                #          args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size,
                #          tag='cox')
                #
                # if args.lfw_dir:
                #     evaluate(sess, lfw_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder,
                #             batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, actual_issame, args.batch_size,
                #             args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size)

                # Train for one epoch
                train(args, sess, src_train_set, tgt_train_set, epoch,
                      image_paths_placeholder, labels_placeholder,
                      labels_batch, batch_size_placeholder,
                      learning_rate_placeholder, phase_train_placeholder,
                      enqueue_op, input_queue, global_step, embeddings,
                      total_loss, triplet_loss, adv_loss, reg_loss, train_op,
                      summary_writer, args.learning_rate_schedule_file,
                      args.embedding_size)

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer,
                                             model_dir, subdir, step)

                # Evaluate on LFW

    return model_dir
예제 #2
0
def main(args):
    
    pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
    paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs)
    result_dir = '../data/'
    plt.ioff()  # Disable interactive plotting mode
    
    with tf.Graph().as_default():

        with tf.Session() as sess:
    
            # Load the model
            print('Loading model "%s"' % args.model_file)
            facenet.load_model(args.model_file)
            
            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
            phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
            embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
            image_size = int(images_placeholder.get_shape()[1])
            
            # Run test on LFW to check accuracy for different horizontal/vertical translations of input images
            if args.nrof_offsets>0:
                step = 3
                offsets = np.asarray([x*step for x in range(-args.nrof_offsets//2+1, args.nrof_offsets//2+1)])
                horizontal_offset_accuracy = [None] * len(offsets)
                for idx, offset in enumerate(offsets):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, image_size, embeddings, 
                        paths, actual_issame, translate_images, (offset,0), 60, args.orig_image_size, args.seed)
                    print('Hoffset: %1.3f  Accuracy: %1.3f+-%1.3f' % (offset, np.mean(accuracy), np.std(accuracy)))
                    horizontal_offset_accuracy[idx] = np.mean(accuracy)
                vertical_offset_accuracy = [None] * len(offsets)
                for idx, offset in enumerate(offsets):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, image_size, embeddings, 
                        paths, actual_issame, translate_images, (0,offset), 60, args.orig_image_size, args.seed)
                    print('Voffset: %1.3f  Accuracy: %1.3f+-%1.3f' % (offset, np.mean(accuracy), np.std(accuracy)))
                    vertical_offset_accuracy[idx] = np.mean(accuracy)
                fig = plt.figure(1)
                plt.plot(offsets, horizontal_offset_accuracy, label='Horizontal')
                plt.plot(offsets, vertical_offset_accuracy, label='Vertical')
                plt.legend()
                plt.grid(True)
                plt.title('Translation invariance on LFW')
                plt.xlabel('Offset [pixels]')
                plt.ylabel('Accuracy')
#                plt.show()
                print('Saving results in %s' % result_dir)
                fig.savefig(os.path.join(result_dir, 'invariance_translation.png'))
                save_result(offsets, horizontal_offset_accuracy, os.path.join(result_dir, 'invariance_translation_horizontal.txt'))
                save_result(offsets, vertical_offset_accuracy, os.path.join(result_dir, 'invariance_translation_vertical.txt'))

            # Run test on LFW to check accuracy for different rotation of input images
            if args.nrof_angles>0:
                step = 3
                angles = np.asarray([x*step for x in range(-args.nrof_offsets//2+1, args.nrof_offsets//2+1)])
                rotation_accuracy = [None] * len(angles)
                for idx, angle in enumerate(angles):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, image_size, embeddings, 
                        paths, actual_issame, rotate_images, angle, 60, args.orig_image_size, args.seed)
                    print('Angle: %1.3f  Accuracy: %1.3f+-%1.3f' % (angle, np.mean(accuracy), np.std(accuracy)))
                    rotation_accuracy[idx] = np.mean(accuracy)
                fig = plt.figure(2)
                plt.plot(angles, rotation_accuracy)
                plt.grid(True)
                plt.title('Rotation invariance on LFW')
                plt.xlabel('Angle [deg]')
                plt.ylabel('Accuracy')
#                plt.show()
                print('Saving results in %s' % result_dir)
                fig.savefig(os.path.join(result_dir, 'invariance_rotation.png'))
                save_result(angles, rotation_accuracy, os.path.join(result_dir, 'invariance_rotation.txt'))

            # Run test on LFW to check accuracy for different scaling of input images
            if args.nrof_scales>0:
                step = 0.05
                scales = np.asarray([x*step+1 for x in range(-args.nrof_offsets//2+1, args.nrof_offsets//2+1)])
                scale_accuracy = [None] * len(scales)
                for scale_idx, scale in enumerate(scales):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, image_size, embeddings, 
                        paths, actual_issame, scale_images, scale, 60, args.orig_image_size, args.seed)
                    print('Scale: %1.3f  Accuracy: %1.3f+-%1.3f' % (scale, np.mean(accuracy), np.std(accuracy)))
                    scale_accuracy[scale_idx] = np.mean(accuracy)
                fig = plt.figure(3)
                plt.plot(scales, scale_accuracy)
                plt.grid(True)
                plt.title('Scale invariance on LFW')
                plt.xlabel('Scale')
                plt.ylabel('Accuracy')
#                plt.show()
                print('Saving results in %s' % result_dir)
                fig.savefig(os.path.join(result_dir, 'invariance_scale.png'))
                save_result(scales, scale_accuracy, os.path.join(result_dir, 'invariance_scale.txt'))
예제 #3
0
def main(args):

    network = importlib.import_module(args.model_def)
    image_size = (args.image_size, args.image_size)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    stat_file_name = os.path.join(log_dir, 'stat.h5')

    # Write arguments to a text file
    facenet.write_arguments_to_file(args, os.path.join(log_dir,
                                                       'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    random.seed(args.seed)
    dataset = facenet.get_dataset(args.data_dir)
    if args.filter_filename:
        dataset = filter_dataset(dataset,
                                 os.path.expanduser(args.filter_filename),
                                 args.filter_percentile,
                                 args.filter_min_nrof_images_per_class)

    if args.validation_set_split_ratio > 0.0:
        train_set, val_set = facenet.split_dataset(
            dataset, args.validation_set_split_ratio,
            args.min_nrof_val_images_per_class, 'SPLIT_IMAGES')
    else:
        train_set, val_set = dataset, []

    nrof_classes = len(train_set)

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    pretrained_model = None
    if args.pretrained_model:
        pretrained_model = os.path.expanduser(args.pretrained_model)
        print('Pre-trained model: %s' % pretrained_model)

    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(
            os.path.expanduser(args.lfw_dir), pairs)

    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)

        # Get a list of image paths and their labels
        image_list, label_list = facenet.get_image_paths_and_labels(train_set)
        assert len(image_list) > 0, 'The training set should not be empty'

        val_image_list, val_label_list = facenet.get_image_paths_and_labels(
            val_set)

        # Create a queue that produces indices into the image_list and label_list
        labels = ops.convert_to_tensor(label_list, dtype=tf.int32)
        range_size = array_ops.shape(labels)[0]
        index_queue = tf.train.range_input_producer(range_size,
                                                    num_epochs=None,
                                                    shuffle=True,
                                                    seed=None,
                                                    capacity=32)

        index_dequeue_op = index_queue.dequeue_many(
            args.batch_size * args.epoch_size, 'index_dequeue')

        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        image_paths_placeholder = tf.placeholder(tf.string,
                                                 shape=(None, 1),
                                                 name='image_paths')
        labels_placeholder = tf.placeholder(tf.int32,
                                            shape=(None, 1),
                                            name='labels')
        control_placeholder = tf.placeholder(tf.int32,
                                             shape=(None, 1),
                                             name='control')

        nrof_preprocess_threads = 4
        input_queue = data_flow_ops.FIFOQueue(
            capacity=2000000,
            dtypes=[tf.string, tf.int32, tf.int32],
            shapes=[(1, ), (1, ), (1, )],
            shared_name=None,
            name=None)
        enqueue_op = input_queue.enqueue_many(
            [image_paths_placeholder, labels_placeholder, control_placeholder],
            name='enqueue_op')
        image_batch, label_batch = facenet.create_input_pipeline(
            input_queue, image_size, nrof_preprocess_threads,
            batch_size_placeholder)

        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        label_batch = tf.identity(label_batch, 'label_batch')

        print('Number of classes in training set: %d' % nrof_classes)
        print('Number of examples in training set: %d' % len(image_list))

        print('Number of classes in validation set: %d' % len(val_set))
        print('Number of examples in validation set: %d' % len(val_image_list))

        print('Building training graph')

        # Build the inference graph
        prelogits, _ = network.inference(
            image_batch,
            args.keep_probability,
            phase_train=phase_train_placeholder,
            bottleneck_layer_size=args.embedding_size,
            weight_decay=args.weight_decay)
        logits = slim.fully_connected(
            prelogits,
            len(train_set),
            activation_fn=None,
            weights_initializer=slim.initializers.xavier_initializer(),
            weights_regularizer=slim.l2_regularizer(args.weight_decay),
            scope='Logits',
            reuse=False)

        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')

        # Norm for the prelogits
        eps = 1e-4
        prelogits_norm = tf.reduce_mean(
            tf.norm(tf.abs(prelogits) + eps, ord=args.prelogits_norm_p,
                    axis=1))
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES,
                             prelogits_norm * args.prelogits_norm_loss_factor)

        # Add center loss
        prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch,
                                                       args.center_loss_alfa,
                                                       nrof_classes)
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES,
                             prelogits_center_loss * args.center_loss_factor)

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the average cross entropy loss across the batch
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=label_batch,
            logits=logits,
            name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy,
                                            name='cross_entropy')
        tf.add_to_collection('losses', cross_entropy_mean)

        correct_prediction = tf.cast(
            tf.equal(tf.argmax(logits, 1), tf.cast(label_batch, tf.int64)),
            tf.float32)
        accuracy = tf.reduce_mean(correct_prediction)

        # Calculate the total losses
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([cross_entropy_mean] + regularization_losses,
                              name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer,
                                 learning_rate, args.moving_average_decay,
                                 tf.global_variables(), args.log_histograms)

        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if pretrained_model:
                print('Restoring pretrained model: %s' % pretrained_model)
                saver.restore(sess, pretrained_model)

            # Training and validation loop
            print('Running training')
            nrof_steps = args.max_nrof_epochs * args.epoch_size
            nrof_val_samples = int(
                math.ceil(args.max_nrof_epochs / args.validate_every_n_epochs)
            )  # Validate every validate_every_n_epochs as well as in the last epoch
            stat = {
                'loss':
                np.zeros((nrof_steps, ), np.float32),
                'center_loss':
                np.zeros((nrof_steps, ), np.float32),
                'reg_loss':
                np.zeros((nrof_steps, ), np.float32),
                'xent_loss':
                np.zeros((nrof_steps, ), np.float32),
                'prelogits_norm':
                np.zeros((nrof_steps, ), np.float32),
                'accuracy':
                np.zeros((nrof_steps, ), np.float32),
                'val_loss':
                np.zeros((nrof_val_samples, ), np.float32),
                'val_xent_loss':
                np.zeros((nrof_val_samples, ), np.float32),
                'val_accuracy':
                np.zeros((nrof_val_samples, ), np.float32),
                'lfw_accuracy':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'lfw_valrate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'learning_rate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_train':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_validate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_evaluate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'prelogits_hist':
                np.zeros((args.max_nrof_epochs, 1000), np.float32),
            }
            for epoch in range(1, args.max_nrof_epochs + 1):
                step = sess.run(global_step, feed_dict=None)
                # Train for one epoch
                t = time.time()
                cont = train(
                    args, sess, epoch, image_list, label_list,
                    index_dequeue_op, enqueue_op, image_paths_placeholder,
                    labels_placeholder, learning_rate_placeholder,
                    phase_train_placeholder, batch_size_placeholder,
                    control_placeholder, global_step, total_loss, train_op,
                    summary_op, summary_writer, regularization_losses,
                    args.learning_rate_schedule_file, stat, cross_entropy_mean,
                    accuracy, learning_rate, prelogits, prelogits_center_loss,
                    args.random_rotate, args.random_crop, args.random_flip,
                    prelogits_norm, args.prelogits_hist_max,
                    args.use_fixed_image_standardization)
                stat['time_train'][epoch - 1] = time.time() - t

                if not cont:
                    break

                t = time.time()
                if len(val_image_list) > 0 and (
                    (epoch - 1) % args.validate_every_n_epochs
                        == args.validate_every_n_epochs - 1
                        or epoch == args.max_nrof_epochs):
                    validate(args, sess, epoch, val_image_list, val_label_list,
                             enqueue_op, image_paths_placeholder,
                             labels_placeholder, control_placeholder,
                             phase_train_placeholder, batch_size_placeholder,
                             stat, total_loss, regularization_losses,
                             cross_entropy_mean, accuracy,
                             args.validate_every_n_epochs,
                             args.use_fixed_image_standardization)
                stat['time_validate'][epoch - 1] = time.time() - t

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer,
                                             model_dir, subdir, epoch)

                # Evaluate on LFW
                t = time.time()
                if args.lfw_dir:
                    evaluate(sess, enqueue_op, image_paths_placeholder,
                             labels_placeholder, phase_train_placeholder,
                             batch_size_placeholder, control_placeholder,
                             embeddings, label_batch, lfw_paths, actual_issame,
                             args.lfw_batch_size, args.lfw_nrof_folds, log_dir,
                             step, summary_writer, stat, epoch,
                             args.lfw_distance_metric, args.lfw_subtract_mean,
                             args.lfw_use_flipped_images,
                             args.use_fixed_image_standardization)
                stat['time_evaluate'][epoch - 1] = time.time() - t

                print('Saving statistics')
                with h5py.File(stat_file_name, 'w') as f:
                    for key, value in stat.iteritems():
                        f.create_dataset(key, data=value)

    return model_dir
def main(args):

    config = config_reader.triplets_afix_config(args.config)

    np.random.seed(seed=config.seed)
    network = importlib.import_module(config.model_def)

    chokepoint_dataset = chokepoint.chokepoint_data(config.chokepoint_still_dir,
                                                    config.chokepoint_video_dir,
                                                    config.chokepoint_pairs)

    fold_list = [([0, 1], [2, 3, 4]),
                 ([1, 2], [3, 4, 0]),
                 ([2, 3], [4, 0, 1]),
                 ([3, 4], [0, 1, 2]),
                 ([4, 0], [1, 2, 3])]

    for fold_idx in range(5):

        print('Fold: {}'.format(fold_idx))

        train_folds, evaluation_folds = fold_list[fold_idx]

        # Train set
        chokepoint_train_set = chokepoint_dataset.get_S2V_dataset(train_folds)
        chokepoint1_paths, chokepoint1_issame = chokepoint_dataset.get_pairs(train_folds)

        # Validation set
        chokepoint2_paths, chokepoint2_issame = chokepoint_dataset.get_pairs(evaluation_folds)

        subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
        log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), 'fold{}_'.format(fold_idx) + subdir)
        if not os.path.isdir(log_dir):  # Create the log directory if it doesn't exist
            os.makedirs(log_dir)
        model_dir = os.path.join(os.path.expanduser(args.models_base_dir), 'fold{}_'.format(fold_idx) + subdir)
        if not os.path.isdir(model_dir):  # Create the model directory if it doesn't exist
            os.makedirs(model_dir)

        # Write arguments to a text file
        facenet.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt'))

        # Store some git revision info in a text file in the log directory
        src_path,_ = os.path.split(os.path.realpath(__file__))
        facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

        print('Model directory: %s' % model_dir)
        print('Log directory: %s' % log_dir)
        if args.pretrained_model:
            print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model))

        if args.lfw_dir:
            print('LFW directory: %s' % args.lfw_dir)
            # Read the file containing the pairs used for testing
            pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
            # Get the paths for the corresponding images
            lfw_paths, lfw_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs)

        with tf.Graph().as_default():
            tf.set_random_seed(args.seed)
            global_step = tf.Variable(0, trainable=False)

            # Placeholder for the learning rate
            learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate')

            batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')

            phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

            image_paths_placeholder = tf.placeholder(tf.string, shape=(None,3), name='image_paths')
            labels_placeholder = tf.placeholder(tf.int64, shape=(None,3), name='labels')

            input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                        dtypes=[tf.string, tf.int64],
                                        shapes=[(3,), (3,)],
                                        shared_name=None, name=None)
            enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder])

            nrof_preprocess_threads = 4
            images_and_labels = []
            for _ in range(nrof_preprocess_threads):
                filenames, label = input_queue.dequeue()
                images = []
                for filename in tf.unstack(filenames):
                    file_contents = tf.read_file(filename)
                    image = tf.image.decode_image(file_contents, channels=3)

                    if args.random_crop:
                        image = tf.random_crop(image, [args.image_size, args.image_size, 3])
                    else:
                        image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size)
                    if args.random_flip:
                        image = tf.image.random_flip_left_right(image)

                    #pylint: disable=no-member
                    image.set_shape((args.image_size, args.image_size, 3))
                    images.append(tf.image.per_image_standardization(image))
                images_and_labels.append([images, label])

            image_batch, labels_batch = tf.train.batch_join(
                images_and_labels, batch_size=batch_size_placeholder,
                shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True,
                capacity=4 * nrof_preprocess_threads * args.batch_size,
                allow_smaller_final_batch=True)
            image_batch = tf.identity(image_batch, 'image_batch')
            image_batch = tf.identity(image_batch, 'input')
            labels_batch = tf.identity(labels_batch, 'label_batch')

            # Build the inference graph
            prelogits, _ = network.inference(image_batch, args.keep_probability,
                phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size,
                weight_decay=args.weight_decay)

            embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
            # Split embeddings into anchor, positive and negative and calculate triplet loss
            anchor, positive, negative = tf.unstack(tf.reshape(embeddings, [-1,3,args.embedding_size]), 3, 1)
            triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha)

            learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step,
                args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True)
            tf.summary.scalar('learning_rate', learning_rate)

            # Calculate the total losses
            regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
            total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss')

            # Build a Graph that trains the model with one batch of examples and updates the model parameters
            train_op = facenet.train(total_loss, global_step, args.optimizer,
                learning_rate, args.moving_average_decay, tf.global_variables())

            # Create a saver
            saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

            # Build the summary operation based on the TF collection of Summaries.
            # summary_op = tf.summary.merge_all()

            # Start running operations on the Graph.
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
            sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

            # Initialize variables
            sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder:True})
            sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder:True})

            summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
            coord = tf.train.Coordinator()
            tf.train.start_queue_runners(coord=coord, sess=sess)

            with sess.as_default():

                if args.pretrained_model:
                    print('Restoring pretrained model: %s' % args.pretrained_model)
                    saver.restore(sess, os.path.expanduser(args.pretrained_model))

                # Training and validation loop
                epoch = 0
                while epoch < args.max_nrof_epochs:
                    step = sess.run(global_step, feed_dict=None)
                    epoch = step // args.epoch_size

                    # Evaluate on COX
                    evaluate(sess, chokepoint1_paths, embeddings, labels_batch, image_paths_placeholder,
                             labels_placeholder,
                             batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op,
                             chokepoint1_issame, 100,
                             2, log_dir, step, summary_writer, args.embedding_size,
                             tag='chokepoint_train')

                    evaluate(sess, chokepoint2_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder,
                                          batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op,
                                          chokepoint2_issame, 100,
                                          3, log_dir, step, summary_writer, args.embedding_size, tag='chokepoint_eval')



                    # Evaluate on LFW
                    # if args.lfw_dir:
                    #     lfw_result = evaluate(sess, lfw_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder,
                    #                           batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op,
                    #                           lfw_issame, args.batch_size,
                    #                           args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size, tag='lfw')

                    # Train for one epoch
                    train(args, sess, chokepoint_train_set, epoch, image_paths_placeholder, labels_placeholder, labels_batch,
                        batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue, global_step,
                        embeddings, total_loss, train_op, summary_writer, args.learning_rate_schedule_file,
                        args.embedding_size)

                    # Save variables and the metagraph if it doesn't exist already
                    save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step)

    return model_dir
예제 #5
0
def main(args):

    # Read the file containing the pairs used for testing
    pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))

    # Get the paths for the corresponding images
    paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs)

    # Get the paths for embeddings projection
    lfw_proj_paths, lfw_proj_labels = lfw.get_paths_from_file(args.lfw_dir, args.lfw_projection)

    # Create label map if does not exist
    if not os.path.exists(args.emb_dir):
        os.makedirs(args.emb_dir)
    with open(os.path.join(args.emb_dir, 'meta.tsv'), "w") as meta_file:
        csvWriter = csv.writer(meta_file, delimiter='\t')
        csvWriter.writerows(np.array([lfw_proj_labels]).T)

    with tf.Graph().as_default():
      
        with tf.Session() as sess:
            
            image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths')
            labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels')
            batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
            control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control')
            phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
 
            nrof_preprocess_threads = 4
            image_size = (args.image_size, args.image_size)
            eval_input_queue = data_flow_ops.FIFOQueue(capacity=2000000,
                                        dtypes=[tf.string, tf.int32, tf.int32],
                                        shapes=[(1,), (1,), (1,)],
                                        shared_name=None, name=None)
            eval_enqueue_op = eval_input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='eval_enqueue_op')
            image_batch, label_batch = facenet.create_input_pipeline(eval_input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder)
     
            # Load the model
            input_map = {'image_batch': image_batch, 'label_batch': label_batch, 'phase_train': phase_train_placeholder}
            facenet.load_model(args.model, input_map=input_map)

            # Get output tensor
            embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
#              
            coord = tf.train.Coordinator()
            tf.train.start_queue_runners(coord=coord, sess=sess)

            save_embeddings(sess,
                            lfw_proj_paths,
                            label_batch,
                            embeddings,
                            image_paths_placeholder,
                            labels_placeholder,
                            batch_size_placeholder,
                            control_placeholder,
                            phase_train_placeholder,
                            eval_enqueue_op,
                            args.emb_dir)

            evaluate(sess, eval_enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder,
                embeddings, label_batch, paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, args.distance_metric, args.subtract_mean,
                args.use_flipped_images, args.use_fixed_image_standardization)