예제 #1
0
    def test_label_encoder(self):
        d, _ = load_datasets(1)
        for s in d.take(1):
            print(s[0].shape)
            print(s[1].shape)

        encoder = LabelEncoder()
        _, l = encoder.encode_batch(
            s[0], tf.constant([[0, 1, 0, 1]],
                              shape=[1, 1, 4],
                              dtype=tf.float32),
            tf.constant([[1]], shape=[1, 1]))
        print(l.shape)

        b_init = tf.constant_initializer(-np.log((1 - 0.01) / 0.01))
        x = tf.random.normal((s[0].shape))
        model = build_model(2)
        y = model(x)
        print(y.shape)
예제 #2
0
import os
import time

import tensorflow as tf

from dataset import load_datasets
from label_util import num_classes
from alexnet import parameters, inference

now = datetime.now().strftime("%Y%m%d%H%M%S")
model_dir = 'model_%s' % (now)
os.mkdir(model_dir)
checkpoint_path = os.path.join(model_dir, 'model.ckpt')
print('checkpoint path: %s' % (checkpoint_path))

data = load_datasets()

learning_rate = 0.05
dropout = 0.8
training_iters = 20000
batch_size = 64
display_step = 10

x = tf.placeholder(tf.float32, [None, 227, 227, 3])
y = tf.placeholder(tf.float32, [None, num_classes])
keep_prob = tf.placeholder(tf.float32)

weights, biases = parameters()

pred = inference(x, weights, biases, keep_prob)
예제 #3
0
    f"{DATA}/upsample.csv",
    index_col="image_id",
    usecols=["image_id", "fold", "target"],
    dtype={"fold": np.byte, "target": np.byte},
)

_ = df_folds.groupby("fold").target.hist(alpha=0.4)
df_folds.groupby("fold").target.mean().to_frame("ratio").T


# %%
df_test = pd.read_csv(f"{DATA}/test.csv", index_col="image_name")


# %%
ds_train, ds_val, ds_test = load_datasets(fold_number)


# %%
len(ds_train), len(ds_val), len(ds_test)


# %% [markdown]
# # Model

# %%
from efficientnet_pytorch import EfficientNet
from pytorch_lightning.metrics.classification import AUROC
from sklearn.metrics import roc_auc_score

예제 #4
0
파일: main.py 프로젝트: songheony/TAkS
        learning_rate = 8e-4

        def adjust_learning_rate(optimizer, epoch):
            for param_group in optimizer.param_groups:
                if epoch < 5:
                    param_group["lr"] = 8e-4
                elif epoch < 10:
                    param_group["lr"] = 5e-4
                elif epoch < 15:
                    param_group["lr"] = 5e-5

    train_dataset, valid_dataset, test_dataset, train_noise_ind = load_datasets(
        args.dataset_name,
        args.dataset_path,
        args.train_ratio,
        args.noise_type,
        args.noise_ratio,
        args.noise_classes,
        args.seed,
    )
    train_dataloader = DataLoader(
        train_dataset, batch_size=batch_size, shuffle=True, num_workers=8
    )
    test_dataloader = DataLoader(
        test_dataset, batch_size=batch_size, shuffle=False, num_workers=8
    )
    if valid_dataset is not None:
        valid_dataloader = DataLoader(
            valid_dataset, batch_size=batch_size, shuffle=False, num_workers=8
        )
    else:
예제 #5
0
def keras_inference():
    _, dataset_val = load_datasets(args.data_path)
    model = tf.keras.models.load_model(args.saved_model)
    pred = model.predict(dataset_val.take(8 * 2))
예제 #6
0
                    help='path to the model dir')

# basic params
FLAGS = parser.parse_args()

BATCH_SZ = FLAGS.batch_size
LEARNING_RATE = FLAGS.learning_rate
MAX_EPOCH = FLAGS.max_epoch
MODEL_SAVE_PATH = FLAGS.model_save_path
CHECKPOINT_PATH = FLAGS.checkpoint_path
DATA_PATH = FLAGS.data_path
MODEL_PATH = FLAGS.model_path
MODEL_NAME = FLAGS.model_name

dataset_train, dataset_val = load_datasets(DATA_PATH,
                                           batch_size=BATCH_SZ,
                                           buffer_size=1000,
                                           val_size=128)
input_shape = [512, 512, 6]
model = Nest_Net2(input_shape)
print('Dataset spec')
print(dataset_train.element_spec)

precision = Precision()
recall = Recall()
#accuracy = BinaryAccuracy()
#f1_score = F1Score(num_classes=2, threshold=0.5)
#f1_score = F1_score
kappa = CohenKappa(num_classes=2)
auc = AUC(num_thresholds=20)
iou = MeanIoU(num_classes=2)
# use LR?
예제 #7
0
if __name__ == '__main__':
    args = parser.parse_args()

    # whether to use cuda
    args.use_cuda = args.use_cuda and torch.cuda.is_available()

    # set device (gpu/cpu) according to args.use_cuda
    device = torch.device("cuda" if args.use_cuda else "cpu")
    torch.manual_seed(args.seed)

    # load dataset: MNIST or Fashion_MNIST
    assert args.data_type in (
        'MNIST',
        'Fashion_MNIST'), "Choose data_type between MNIST or Fashion_MNIST"
    dataset_train, dataset_test = load_datasets(data_type=args.data_type,
                                                batch_size=args.batch_size)

    # Model path(save or load)
    if (not os.path.exists(args.model_pth)) & (args.mode == 'train'):
        print("Directory to save the model does not exist. Make one? [y | n]")
        dir_yn = str(input())
        if dir_yn == 'y':
            os.makedirs(args.model_pth)
            save_load_flag = True

        elif dir_yn == 'n':
            print("Please check directory. Not able to save model this time!")
            save_load_flag = False

        else:
            raise Exception("Input should be either y or n")
예제 #8
0
parser.add_argument('--model_pth',
                    type=str,
                    default='./model/trained_vae.pkl',
                    help="Path for the model to be saved or loaded from")

if __name__ == '__main__':
    args = parser.parse_args()

    # whether to use cuda
    args.use_cuda = args.use_cuda and torch.cuda.is_available()

    # set device (gpu/cpu) according to args.use_cuda
    device = torch.device("cuda" if args.use_cuda else "cpu")
    torch.manual_seed(args.seed)

    dataset_train, dataset_test = load_datasets(batch_size=args.batch_size)

    if args.use_cuda:
        model = VAE(latent_dim=args.latent_dims).cuda()
    else:
        model = VAE(latent_dim=args.latent_dims)

    if args.mode == 'train':
        train_losses = train(model=model,
                             trainset=dataset_train,
                             lr=1e-3,
                             epochs=args.epochs,
                             log_interval=args.log_interval,
                             cuda=args.use_cuda,
                             save_path=args.model_pth)
예제 #9
0
                if args.algorithm == "Ours":
                    draw_heatmap(args.algorithm, n_samples, log_dir, args.seed,
                                 ind_path, save_dir)

                (
                    train_dataset,
                    valid_dataset,
                    test_dataset,
                    train_noise_ind,
                    original_labels,
                ) = load_datasets(
                    dataset_name,
                    args.dataset_path,
                    1,
                    noise_type,
                    noise_ratio,
                    [],
                    args.seed,
                    need_original=True,
                )
                model = get_model(args.model_name, dataset_name).to("cuda:0")
                draw_sampels(
                    model,
                    train_dataset,
                    original_labels,
                    args.algorithm,
                    log_dir,
                    args.seed,
                    ind_path,
                    save_dir,
                )
예제 #10
0
def main():
    # argument parsing
    parser = argparse.ArgumentParser()

    parser.add_argument('--max-epochs', type=int, default=2)
    parser.add_argument('--batch-size', type=int, default=4)
    parser.add_argument('--max-sequence-length', type=int, default=128)

    parser.add_argument('--seed', type=int, default=None)
    parser.add_argument('--data-dir', type=str, default='data')
    parser.add_argument('--real-dataset', type=str, default='webtext')
    parser.add_argument('--fake-dataset', type=str, default='xl-1542M-nucleus')
    parser.add_argument('--save-dir', type=str, default='bert_logs')

    parser.add_argument('--learning-rate', type=float, default=2e-5)
    parser.add_argument('--weight-decay', type=float, default=0)
    parser.add_argument('--model-name', type=str, default='bert-base-cased')
    parser.add_argument('--wandb', type=bool, default=True)

    args = parser.parse_args()
    if args.wandb:
        wandb.init(project=args.model_name)

    device = "cuda" if torch.cuda.is_available() else "cpu"

    # config, tokenizer, model
    config = AutoConfig.from_pretrained(
        args.model_name,
        num_labels=2
    )

    tokenizer = AutoTokenizer.from_pretrained(args.model_name)
    tokenization_utils.logger.setLevel('DEBUG')

    model = AutoModelForSequenceClassification.from_pretrained(
        args.model_name,
        config=config
    )
    model.to(device)

    # load data
    train_loader, validation_loader, test_loader = load_datasets(args, tokenizer)

    # my model
    optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)

    best_val = 0.
    for epoch in range(args.max_epochs):
        train(model, optimizer, train_loader, args, device)
        val_acc = validation(model, validation_loader, args, device)
        test_acc = test(model, test_loader, args, device)

        print(f"Epoch {epoch + 1} | val_acc: {val_acc} test_acc: {test_acc}")

        if val_acc > best_val:
            os.makedirs(args.save_dir, exist_ok=True)
            model_name = 'baseline_' + args.model_name + '.pt'
            model_to_save = model.module if hasattr(model, 'module') else model
            torch.save(dict(
                epoch=epoch+1,
                model_state_dict=model_to_save.state_dict(),
                optimizer_state_dict=optimizer.state_dict(),
                args=args
            ),
                os.path.join(args.save_dir, model_name)
            )
            print("Model saved to", args.save_dir)
            best_val = val_acc
예제 #11
0
    # Compile the model for training.
    learning_rate_schedule = tf.optimizers.schedules.PiecewiseConstantDecay(
        boundaries=[125, 250, 500, 240000, 360000],
        values=[2.5e-07, 0.000625, 0.00125, 0.0025, 0.00025, 2.5e-05])
    optimizer = tf.optimizers.SGD(learning_rate=learning_rate_schedule)
    model.compile(loss=RetinaNetLoss(num_classes), optimizer=optimizer)

    # Setting up callbacks
    callbacks_list = [
        tf.keras.callbacks.ModelCheckpoint(filepath=os.path.join(
            checkpoint_dir, "linglong"),
                                           monitor="val_loss",
                                           save_best_only=True,
                                           save_weights_only=True,
                                           verbose=1),
        tf.keras.callbacks.TensorBoard(log_dir=log_dir),
        LogImages(log_dir, log_image)
    ]

    # Load the WIDER dataset using TensorFlow Datasets
    dataset_train = load_datasets(record_train, args.batch_size, True)
    dataset_val = load_datasets(record_val, args.batch_size, False)

    # Training
    model.fit(dataset_train,
              validation_data=dataset_val.take(50),
              epochs=args.epochs,
              callbacks=callbacks_list,
              initial_epoch=args.initial_epoch,
              verbose=1)