예제 #1
0
n_folds = args.cv if args.cv is not None else 1

if n_folds > 1:
    fold_splits = load_cv_splits(args.dataset,
                                 dataset_name,
                                 n_folds,
                                 train_ext=train_ext,
                                 valid_ext=valid_ext,
                                 test_ext=test_ext,
                                 dtype=args.dtype)
else:
    fold_splits = load_train_val_test_splits(args.dataset,
                                             dataset_name,
                                             x_only=False,
                                             y_only=False,
                                             train_ext=train_ext,
                                             valid_ext=valid_ext,
                                             test_ext=test_ext,
                                             dtype=args.dtype)

print_fold_splits_shapes(fold_splits)

merged_fold_splits = []

for i, splits in enumerate(fold_splits):
    logging.info('Processing fold {}\n'.format(i))

    merged_splits = []
    for j, split in enumerate(splits):
        if split is not None:
            split_x, split_y = split
예제 #2
0
                                        test_ext=repr_test_x_ext,
                                        dtype=args.repr_x_dtype)
    if decode:
        repr_fold_y_splits = load_cv_splits(args.repr_y,
                                            dataset_name,
                                            n_folds,
                                            y_only=True,
                                            train_ext=repr_train_y_ext,
                                            valid_ext=repr_valid_y_ext,
                                            test_ext=repr_test_y_ext,
                                            dtype=args.repr_y_dtype)

else:
    fold_splits = load_train_val_test_splits(args.dataset,
                                             dataset_name,
                                             train_ext=train_ext,
                                             valid_ext=valid_ext,
                                             test_ext=test_ext,
                                             dtype=args.dtype)
    repr_fold_x_splits = load_train_val_test_splits(args.repr_x,
                                                    dataset_name,
                                                    x_only=True,
                                                    train_ext=repr_train_x_ext,
                                                    valid_ext=repr_valid_x_ext,
                                                    test_ext=repr_test_x_ext,
                                                    dtype=args.repr_x_dtype)
    if decode:
        repr_fold_y_splits = load_train_val_test_splits(args.repr_y,
                                                        dataset_name,
                                                        y_only=True,
                                                        train_ext=repr_train_y_ext,
                                                        valid_ext=repr_valid_y_ext,