n_folds = args.cv if args.cv is not None else 1 if n_folds > 1: fold_splits = load_cv_splits(args.dataset, dataset_name, n_folds, train_ext=train_ext, valid_ext=valid_ext, test_ext=test_ext, dtype=args.dtype) else: fold_splits = load_train_val_test_splits(args.dataset, dataset_name, x_only=False, y_only=False, train_ext=train_ext, valid_ext=valid_ext, test_ext=test_ext, dtype=args.dtype) print_fold_splits_shapes(fold_splits) merged_fold_splits = [] for i, splits in enumerate(fold_splits): logging.info('Processing fold {}\n'.format(i)) merged_splits = [] for j, split in enumerate(splits): if split is not None: split_x, split_y = split
test_ext=repr_test_x_ext, dtype=args.repr_x_dtype) if decode: repr_fold_y_splits = load_cv_splits(args.repr_y, dataset_name, n_folds, y_only=True, train_ext=repr_train_y_ext, valid_ext=repr_valid_y_ext, test_ext=repr_test_y_ext, dtype=args.repr_y_dtype) else: fold_splits = load_train_val_test_splits(args.dataset, dataset_name, train_ext=train_ext, valid_ext=valid_ext, test_ext=test_ext, dtype=args.dtype) repr_fold_x_splits = load_train_val_test_splits(args.repr_x, dataset_name, x_only=True, train_ext=repr_train_x_ext, valid_ext=repr_valid_x_ext, test_ext=repr_test_x_ext, dtype=args.repr_x_dtype) if decode: repr_fold_y_splits = load_train_val_test_splits(args.repr_y, dataset_name, y_only=True, train_ext=repr_train_y_ext, valid_ext=repr_valid_y_ext,