def train(args): """ trains the reading comprehension model """ logger = logging.getLogger("brc") logger.info('Load data_set and vocab...') with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin: vocab = pickle.load(fin) with open(os.path.join(args.vocab_dir,'char_vocab.data'),'rb') as fin: char_vocab=pickle.load(fin) brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,args.word_size, args.train_files, args.dev_files) logger.info('Converting text into ids...') brc_data.convert_to_ids(vocab) brc_data.convert_to_char_ids(char_vocab) logger.info('Initialize the model...') rc_model = RCModel(vocab,char_vocab, args) #rc_model.restore(model_dir=args.model_dir, model_prefix=args.algo) logger.info('Training the model...') rc_model.train(brc_data, args.epochs, args.batch_size, save_dir=args.model_dir, save_prefix=args.algo, dropout_keep_prob=args.dropout_keep_prob) logger.info('Done with model training!')
def train(args): """ trains the reading comprehension model """ logger = logging.getLogger("brc") logger.info('Load data_set and vocab...') with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin: vocab = pickle.load(fin) if args.word2vec_path: logger.info('learn_word_embedding:{}'.format(args.learn_word_embedding)) logger.info('loadding %s \n' % args.word2vec_path) word2vec = gensim.models.Word2Vec.load(args.word2vec_path) vocab.load_pretrained_embeddings_from_w2v(word2vec.wv) logger.info('load pretrained embedding from %s done\n' % args.word2vec_path) if args.use_char_embed: with open(os.path.join(args.vocab_dir, 'char_vocab.data'), 'rb') as fin: char_vocab = pickle.load(fin) brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len, args.train_files, args.dev_files) steps_per_epoch = brc_data.size('train') // args.batch_size args.decay_steps = args.decay_epochs * steps_per_epoch logger.info('Converting text into ids...') brc_data.convert_to_ids(vocab) if args.use_char_embed: logger.info('Converting text into char ids...') brc_data.convert_to_char_ids(char_vocab) logger.info('Binding char_vocab to args to pass to RCModel') args.char_vocab = char_vocab RCModel = choose_model_by_gpu_setting(args) logger.info('Initialize the model...') rc_model = RCModel(vocab, args) logger.info('Training the model...{}'.format(RCModel.__name__)) rc_model.train(brc_data, args.epochs, args.batch_size, save_dir=args.model_dir, save_prefix=args.algo, dropout_keep_prob=args.dropout_keep_prob) logger.info('Done with model training!')