예제 #1
0
파일: AwA2.py 프로젝트: ylytju/SCILM-ZSL
    def train(self):

        self.sess = tf.Session()
        self.sess.run(tf.global_variables_initializer())
        learn_rate = self.lr
        for i in range(self.iter_num + 1):
            att_batch, img_batch, lab_batch = data_iterator(
                self.sess, self.train_data, self.selected_num, self.ave_img_pl,
                self.ave_att_pl, self.Weights_encoder)
            dataset = LoadDataset(att_batch, img_batch, lab_batch)
            next_batch = dataset.get_batch
            con_att_batch, con_img_batch, con_lab_batch = next_batch(
                self.batch_size)

            self.sess.run(self.optimizer,
                          feed_dict={
                              self.att_pl: att_batch,
                              self.img_pl: img_batch,
                              self.con_img_pl: con_img_batch,
                              self.con_att_pl: con_att_batch,
                              self.similarity_float: con_lab_batch,
                              self.lr_pl: learn_rate
                          })

            if i >= 1000:
                learn_rate = 5e-5
            if i % 200 == 0:
                print('the %d-th iter' % i)
                self.test()
예제 #2
0
def validate(opt):
    param = _param()
    dataset = LoadDataset(opt)
    param.X_dim = dataset.feature_dim

    # data_layer = FeatDataLayer(dataset.labels_train, dataset.pfc_feat_data_train, opt)

    # initialize model
    netGs = []

    checkpoint = torch.load(opt.resume)

    parts = 7
    for part in range(parts):
        netG = _netG(dataset.text_dim, 512).cuda()
        netG.load_state_dict(checkpoint['state_dict_G' + str(part)])
        netGs.append(netG)

    train_classifier(opt, param, dataset, netGs)
예제 #3
0
def train(creative_weight=1000, model_num=1, is_val=True):
    param = _param()
    if opt.dataset == 'CUB':
        dataset = LoadDataset(opt, main_dir, is_val)
        exp_info = 'CUB_EASY' if opt.splitmode == 'easy' else 'CUB_HARD'
    elif opt.dataset == 'NAB':
        dataset = LoadDataset_NAB(opt, main_dir, is_val)
        exp_info = 'NAB_EASY' if opt.splitmode == 'easy' else 'NAB_HARD'
    else:
        print('No Dataset with that name')
        sys.exit(0)
    param.X_dim = dataset.feature_dim
    opt.Creative_weight = creative_weight

    data_layer = FeatDataLayer(dataset.labels_train,
                               dataset.pfc_feat_data_train, opt)
    result = Result()

    ones = Variable(torch.Tensor(1, 1))
    ones.data.fill_(1.0)

    netG = _netG(dataset.text_dim, dataset.feature_dim).cuda()
    netG.apply(weights_init)
    if model_num == 6:
        netD = _netD(dataset.train_cls_num + 1, dataset.feature_dim).cuda()
    else:
        netD = _netD(dataset.train_cls_num, dataset.feature_dim).cuda()
    netD.apply(weights_init)

    if model_num == 2:
        log_SM_ab = Scale(2)
        log_SM_ab = nn.DataParallel(log_SM_ab).cuda()
    elif model_num == 4 or model_num == 5:
        log_SM_ab = Scale(1)
        log_SM_ab = nn.DataParallel(log_SM_ab).cuda()

    exp_params = 'Model_{}_CAN{}_Eu{}_Rls{}_RWz{}_{}'.format(
        model_num, opt.Creative_weight, opt.CENT_LAMBDA, opt.REG_W_LAMBDA,
        opt.REG_Wz_LAMBDA, opt.exp_name)

    out_subdir = main_dir + 'out/{:s}/{:s}'.format(exp_info, exp_params)
    if not os.path.exists(out_subdir):
        os.makedirs(out_subdir)

    log_dir = out_subdir + '/log_{:s}.txt'.format(exp_info)
    with open(log_dir, 'a') as f:
        f.write('Training Start:')
        f.write(strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) + '\n')

    start_step = 0

    if opt.resume:
        if os.path.isfile(opt.resume):
            print("=> loading checkpoint '{}'".format(opt.resume))
            checkpoint = torch.load(opt.resume)
            netG.load_state_dict(checkpoint['state_dict_G'])
            netD.load_state_dict(checkpoint['state_dict_D'])
            start_step = checkpoint['it']
            print(checkpoint['log'])
        else:
            print("=> no checkpoint found at '{}'".format(opt.resume))

    if model_num == 2 or model_num == 4 or model_num == 5:
        nets = [netG, netD, log_SM_ab]
    else:
        nets = [netG, netD]

    tr_cls_centroid = Variable(
        torch.from_numpy(dataset.tr_cls_centroid.astype('float32'))).cuda()
    optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(0.5, 0.9))
    optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(0.5, 0.9))
    if model_num == 2 or model_num == 4 or model_num == 5:
        optimizer_SM_ab = optim.Adam(log_SM_ab.parameters(),
                                     lr=opt.lr,
                                     betas=(0.5, 0.999))

    for it in tqdm(range(start_step, 3000 + 1)):
        # Creative Loss
        blobs = data_layer.forward()
        labels = blobs['labels'].astype(int)
        new_class_labels = Variable(
            torch.from_numpy(np.ones_like(labels) *
                             dataset.train_cls_num)).cuda()
        text_feat_1 = np.array(
            [dataset.train_text_feature[i, :] for i in labels])
        text_feat_2 = np.array(
            [dataset.train_text_feature[i, :] for i in labels])
        np.random.shuffle(
            text_feat_1
        )  # Shuffle both features to guarantee different permutations
        np.random.shuffle(text_feat_2)
        alpha = (np.random.random(len(labels)) * (.8 - .2)) + .2

        text_feat_mean = np.multiply(alpha, text_feat_1.transpose())
        text_feat_mean += np.multiply(1. - alpha, text_feat_2.transpose())
        text_feat_mean = text_feat_mean.transpose()
        text_feat_mean = normalize(text_feat_mean, norm='l2', axis=1)
        text_feat_Creative = Variable(
            torch.from_numpy(text_feat_mean.astype('float32'))).cuda()
        z_creative = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()
        G_creative_sample = netG(z_creative, text_feat_Creative)
        """ Discriminator """
        for _ in range(5):
            blobs = data_layer.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)  # class labels

            text_feat = np.array(
                [dataset.train_text_feature[i, :] for i in labels])
            text_feat = Variable(torch.from_numpy(
                text_feat.astype('float32'))).cuda()
            X = Variable(torch.from_numpy(feat_data)).cuda()
            y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
            z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()

            # GAN's D loss
            D_real, C_real = netD(X)
            D_loss_real = torch.mean(D_real)
            C_loss_real = F.cross_entropy(C_real, y_true)
            DC_loss = -D_loss_real + C_loss_real
            DC_loss.backward()

            # GAN's D loss
            G_sample = netG(z, text_feat).detach()
            D_fake, C_fake = netD(G_sample)
            D_loss_fake = torch.mean(D_fake)
            C_loss_fake = F.cross_entropy(C_fake, y_true)

            DC_loss = D_loss_fake + C_loss_fake
            DC_loss.backward()

            # train with gradient penalty (WGAN_GP)
            grad_penalty = calc_gradient_penalty(netD, X.data, G_sample.data)
            grad_penalty.backward()

            Wasserstein_D = D_loss_real - D_loss_fake
            optimizerD.step()
            reset_grad(nets)
        """ Generator """
        for _ in range(1):
            blobs = data_layer.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)  # class labels
            text_feat = np.array(
                [dataset.train_text_feature[i, :] for i in labels])
            text_feat = Variable(torch.from_numpy(
                text_feat.astype('float32'))).cuda()

            X = Variable(torch.from_numpy(feat_data)).cuda()
            y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
            z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()

            G_sample = netG(z, text_feat)
            D_fake, C_fake = netD(G_sample)
            _, C_real = netD(X)

            # GAN's G loss
            G_loss = torch.mean(D_fake)
            # Auxiliary classification loss
            C_loss = (F.cross_entropy(C_real, y_true) +
                      F.cross_entropy(C_fake, y_true)) / 2

            GC_loss = -G_loss + C_loss

            # Centroid loss
            Euclidean_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_W_LAMBDA != 0:
                for i in range(dataset.train_cls_num):
                    sample_idx = (y_true == i).data.nonzero().squeeze()
                    if sample_idx.numel() == 0:
                        Euclidean_loss += 0.0
                    else:
                        G_sample_cls = G_sample[sample_idx, :]
                        Euclidean_loss += (
                            G_sample_cls.mean(dim=0) -
                            tr_cls_centroid[i]).pow(2).sum().sqrt()
                Euclidean_loss *= 1.0 / dataset.train_cls_num * opt.CENT_LAMBDA

            # ||W||_2 regularization
            reg_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_W_LAMBDA != 0:
                for name, p in netG.named_parameters():
                    if 'weight' in name:
                        reg_loss += p.pow(2).sum()
                reg_loss.mul_(opt.REG_W_LAMBDA)

            # ||W_z||21 regularization, make W_z sparse
            reg_Wz_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_Wz_LAMBDA != 0:
                Wz = netG.rdc_text.weight
                reg_Wz_loss = Wz.pow(2).sum(dim=0).sqrt().sum().mul(
                    opt.REG_Wz_LAMBDA)

            # D(C| GX_fake)) + Classify GX_fake as real
            D_creative_fake, C_creative_fake = netD(G_creative_sample)
            if model_num == 1:  # KL Divergence
                G_fake_C = F.log_softmax(C_creative_fake)
            else:
                G_fake_C = F.softmax(C_creative_fake)

            if model_num == 1:  # KL Divergence
                entropy_GX_fake = (G_fake_C / G_fake_C.data.size(1)).mean()
            elif model_num == 2:  # SM Divergence
                q_shape = Variable(
                    torch.FloatTensor(G_fake_C.data.size(0),
                                      G_fake_C.data.size(1))).cuda()
                q_shape.data.fill_(1.0 / G_fake_C.data.size(1))

                SM_ab = F.sigmoid(log_SM_ab(ones))
                SM_a = 0.2 + torch.div(SM_ab[0][0], 1.6666666666666667).cuda()
                SM_b = 0.2 + torch.div(SM_ab[0][1], 1.6666666666666667).cuda()
                pow_a_b = torch.div(1 - SM_a, 1 - SM_b)
                alpha_term = (torch.pow(G_fake_C + 1e-5, SM_a) *
                              torch.pow(q_shape, 1 - SM_a)).sum(1)
                entropy_GX_fake_vec = torch.div(
                    torch.pow(alpha_term, pow_a_b) - 1, SM_b - 1)
            elif model_num == 3:  # Bachatera Divergence
                q_shape = Variable(
                    torch.FloatTensor(G_fake_C.data.size(0),
                                      G_fake_C.data.size(1))).cuda()
                q_shape.data.fill_(1.0 / G_fake_C.data.size(1))
                SM_a = Variable(torch.FloatTensor(1, 1)).cuda()
                SM_a.data.fill_(opt.SM_Alpha)
                SM_b = Variable(torch.FloatTensor(1, 1)).cuda()
                SM_b.data.fill_(opt.SM_Alpha)
                pow_a_b = torch.div(1 - SM_a, 1 - SM_b)
                alpha_term = (torch.pow(G_fake_C + 1e-5, SM_a) *
                              torch.pow(q_shape, 1 - SM_a)).sum(1)
                entropy_GX_fake_vec = -torch.div(
                    torch.pow(alpha_term, pow_a_b) - 1, SM_b - 1)
            elif model_num == 4:  # Tsallis Divergence
                q_shape = Variable(
                    torch.FloatTensor(G_fake_C.data.size(0),
                                      G_fake_C.data.size(1))).cuda()
                q_shape.data.fill_(1.0 / G_fake_C.data.size(1))

                SM_ab = F.sigmoid(log_SM_ab(ones))
                SM_a = 0.2 + torch.div(SM_ab[0][0], 1.6666666666666667).cuda()
                SM_b = SM_a
                pow_a_b = torch.div(1 - SM_a, 1 - SM_b)
                alpha_term = (torch.pow(G_fake_C + 1e-5, SM_a) *
                              torch.pow(q_shape, 1 - SM_a)).sum(1)
                entropy_GX_fake_vec = -torch.div(
                    torch.pow(alpha_term, pow_a_b) - 1, SM_b - 1)
            elif model_num == 5:  # Renyi Divergence
                q_shape = Variable(
                    torch.FloatTensor(G_fake_C.data.size(0),
                                      G_fake_C.data.size(1))).cuda()
                q_shape.data.fill_(1.0 / G_fake_C.data.size(1))

                SM_ab = F.sigmoid(log_SM_ab(ones))
                SM_a = 0.2 + torch.div(SM_ab[0][0], 1.6666666666666667).cuda()
                SM_b = Variable(torch.FloatTensor(1, 1)).cuda()
                SM_b.data.fill_(opt.SM_Beta)
                pow_a_b = torch.div(1 - SM_a, 1 - SM_b)
                alpha_term = (torch.pow(G_fake_C + 1e-5, SM_a) *
                              torch.pow(q_shape, 1 - SM_a)).sum(1)
                entropy_GX_fake_vec = -torch.div(
                    torch.pow(alpha_term, pow_a_b) - 1, SM_b - 1)

            if model_num == 6:
                loss_creative = F.cross_entropy(C_creative_fake,
                                                new_class_labels)
            else:
                if model_num != 1:
                    # Normalize SM-Divergence & Report mean
                    min_e, max_e = torch.min(entropy_GX_fake_vec), torch.max(
                        entropy_GX_fake_vec)
                    entropy_GX_fake_vec = (entropy_GX_fake_vec -
                                           min_e) / (max_e - min_e)
                    entropy_GX_fake = -entropy_GX_fake_vec.mean()
                loss_creative = -opt.Creative_weight * entropy_GX_fake

            disc_GX_fake_real = -torch.mean(D_creative_fake)
            total_loss_creative = loss_creative + disc_GX_fake_real

            all_loss = GC_loss + Euclidean_loss + reg_loss + reg_Wz_loss + total_loss_creative
            all_loss.backward()
            if model_num == 2 or model_num == 4 or model_num == 5:
                optimizer_SM_ab.step()
            optimizerG.step()
            reset_grad(nets)

        if it % opt.disp_interval == 0 and it:
            acc_real = (np.argmax(C_real.data.cpu().numpy(), axis=1)
                        == y_true.data.cpu().numpy()).sum() / float(
                            y_true.data.size()[0])
            acc_fake = (np.argmax(C_fake.data.cpu().numpy(), axis=1)
                        == y_true.data.cpu().numpy()).sum() / float(
                            y_true.data.size()[0])

            log_text = 'Iter-{}; rl: {:.4}%; fk: {:.4}%'.format(
                it, acc_real * 100, acc_fake * 100)
            with open(log_dir, 'a') as f:
                f.write(log_text + '\n')

        if it % opt.evl_interval == 0 and it > opt.disp_interval:
            netG.eval()
            cur_acc = eval_fakefeat_test(it, netG, dataset, param, result)
            cur_auc = eval_fakefeat_GZSL(netG, dataset, param, out_subdir,
                                         result)

            if cur_acc > result.best_acc:
                result.best_acc = cur_acc

            if cur_auc > result.best_auc:
                result.best_auc = cur_auc

                if it % opt.save_interval:
                    files2remove = glob.glob(out_subdir + '/Best_model*')
                    for _i in files2remove:
                        os.remove(_i)
                    torch.save(
                        {
                            'it': it + 1,
                            'state_dict_G': netG.state_dict(),
                            'state_dict_D': netD.state_dict(),
                            'random_seed': opt.manualSeed,
                            'log': log_text,
                        }, out_subdir +
                        '/Best_model_AUC_{:.2f}.tar'.format(cur_auc))

            netG.train()
    return result
예제 #4
0
def train():
    param = _param()
    dataset = LoadDataset(opt)
    param.X_dim = dataset.feature_dim

    data_layer = FeatDataLayer(dataset.labels_train, dataset.pfc_feat_data_train, opt)
    result = Result()

    netG = _netG(dataset.text_dim, dataset.feature_dim).cuda()
    netG.apply(weights_init)
    print(netG)
    netD = _netD(dataset.train_cls_num, dataset.feature_dim).cuda()
    netD.apply(weights_init)
    print(netD)

    exp_info = 'CUB_EASY' if opt.splitmode == 'easy' else 'CUB_HARD'
    exp_params = 'Eu{}_Rls{}_RWz{}'.format(opt.CENT_LAMBDA , opt.REG_W_LAMBDA, opt.REG_Wz_LAMBDA)

    out_dir  = 'out/{:s}'.format(exp_info)
    out_subdir = 'out/{:s}/{:s}'.format(exp_info, exp_params)
    if not os.path.exists('out'):
        os.mkdir('out')
    if not os.path.exists(out_dir):
        os.mkdir(out_dir)
    if not os.path.exists(out_subdir):
        os.mkdir(out_subdir)

    cprint(" The output dictionary is {}".format(out_subdir), 'red')
    log_dir  = out_subdir + '/log_{:s}.txt'.format(exp_info)
    with open(log_dir, 'a') as f:
        f.write('Training Start:')
        f.write(strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) + '\n')

    start_step = 0

    if opt.resume:
        if os.path.isfile(opt.resume):
            print("=> loading checkpoint '{}'".format(opt.resume))
            checkpoint = torch.load(opt.resume)
            netG.load_state_dict(checkpoint['state_dict_G'])
            netD.load_state_dict(checkpoint['state_dict_D'])
            start_step = checkpoint['it']
            print(checkpoint['log'])
        else:
            print("=> no checkpoint found at '{}'".format(opt.resume))

    nets = [netG, netD]

    tr_cls_centroid = Variable(torch.from_numpy(dataset.tr_cls_centroid.astype('float32'))).cuda()
    optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(0.5, 0.9))
    optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(0.5, 0.9))

    for it in range(start_step, 3000+1):
        """ Discriminator """
        for _ in range(5):
            blobs = data_layer.forward()
            feat_data = blobs['data']             # image data
            labels = blobs['labels'].astype(int)  # class labels
            text_feat = np.array([dataset.train_text_feature[i,:] for i in labels])
            text_feat = Variable(torch.from_numpy(text_feat.astype('float32'))).cuda()
            X = Variable(torch.from_numpy(feat_data)).cuda()
            y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
            z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()

            # GAN's D loss
            D_real, C_real = netD(X)
            D_loss_real = torch.mean(D_real)
            C_loss_real = F.cross_entropy(C_real, y_true)
            DC_loss = -D_loss_real + C_loss_real
            DC_loss.backward()

            # GAN's D loss
            G_sample = netG(z, text_feat).detach()
            D_fake, C_fake = netD(G_sample)
            D_loss_fake = torch.mean(D_fake)
            C_loss_fake = F.cross_entropy(C_fake, y_true)
            DC_loss = D_loss_fake + C_loss_fake
            DC_loss.backward()

            # train with gradient penalty (WGAN_GP)
            grad_penalty = calc_gradient_penalty(netD, X.data, G_sample.data)
            grad_penalty.backward()

            Wasserstein_D = D_loss_real - D_loss_fake
            optimizerD.step()
            reset_grad(nets)

        """ Generator """
        for _ in range(1):
            blobs = data_layer.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)  # class labels
            text_feat = np.array([dataset.train_text_feature[i, :] for i in labels])
            text_feat = Variable(torch.from_numpy(text_feat.astype('float32'))).cuda()

            X = Variable(torch.from_numpy(feat_data)).cuda()
            y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
            z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()

            G_sample = netG(z, text_feat)
            D_fake, C_fake = netD(G_sample)
            _,      C_real = netD(X)

            # GAN's G loss
            G_loss = torch.mean(D_fake)
            # Auxiliary classification loss
            C_loss = (F.cross_entropy(C_real, y_true) + F.cross_entropy(C_fake, y_true))/2

            GC_loss = -G_loss + C_loss

            # Centroid loss
            Euclidean_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_W_LAMBDA != 0:
                for i in range(dataset.train_cls_num):
                    sample_idx = (y_true == i).data.nonzero().squeeze()
                    if sample_idx.numel() == 0:
                        Euclidean_loss += 0.0
                    else:
                        G_sample_cls = G_sample[sample_idx, :]
                        Euclidean_loss += (G_sample_cls.mean(dim=0) - tr_cls_centroid[i]).pow(2).sum().sqrt()
                Euclidean_loss *= 1.0/dataset.train_cls_num * opt.CENT_LAMBDA

            # ||W||_2 regularization
            reg_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_W_LAMBDA != 0:
                for name, p in netG.named_parameters():
                    if 'weight' in name:
                        reg_loss += p.pow(2).sum()
                reg_loss.mul_(opt.REG_W_LAMBDA)

            # ||W_z||21 regularization, make W_z sparse
            reg_Wz_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_Wz_LAMBDA != 0:
                Wz = netG.rdc_text.weight
                reg_Wz_loss = Wz.pow(2).sum(dim=0).sqrt().sum().mul(opt.REG_Wz_LAMBDA)

            all_loss = GC_loss + Euclidean_loss + reg_loss + reg_Wz_loss
            all_loss.backward()
            optimizerG.step()
            reset_grad(nets)

        if it % opt.disp_interval == 0 and it:
            acc_real = (np.argmax(C_real.data.cpu().numpy(), axis=1) == y_true.data.cpu().numpy()).sum() / float(y_true.data.size()[0])
            acc_fake = (np.argmax(C_fake.data.cpu().numpy(), axis=1) == y_true.data.cpu().numpy()).sum() / float(y_true.data.size()[0])

            log_text = 'Iter-{}; Was_D: {:.4}; Euc_ls: {:.4}; reg_ls: {:.4}; Wz_ls: {:.4}; G_loss: {:.4}; D_loss_real: {:.4};' \
                       ' D_loss_fake: {:.4}; rl: {:.4}%; fk: {:.4}%'\
                        .format(it, Wasserstein_D.data[0],  Euclidean_loss.data[0], reg_loss.data[0],reg_Wz_loss.data[0],
                                G_loss.data[0], D_loss_real.data[0], D_loss_fake.data[0], acc_real * 100, acc_fake * 100)
            print(log_text)
            with open(log_dir, 'a') as f:
                f.write(log_text+'\n')

        if it % opt.evl_interval == 0 and it >= 100:
            netG.eval()
            eval_fakefeat_test(it, netG, dataset, param, result)
            if result.save_model:
                files2remove = glob.glob(out_subdir + '/Best_model*')
                for _i in files2remove:
                    os.remove(_i)
                torch.save({
                    'it': it + 1,
                    'state_dict_G': netG.state_dict(),
                    'state_dict_D': netD.state_dict(),
                    'random_seed': opt.manualSeed,
                    'log': log_text,
                }, out_subdir + '/Best_model_Acc_{:.2f}.tar'.format(result.acc_list[-1]))
            netG.train()

        if it % opt.save_interval == 0 and it:
            torch.save({
                    'it': it + 1,
                    'state_dict_G': netG.state_dict(),
                    'state_dict_D': netD.state_dict(),
                    'random_seed': opt.manualSeed,
                    'log': log_text,
                },  out_subdir + '/Iter_{:d}.tar'.format(it))
            cprint('Save model to ' + out_subdir + '/Iter_{:d}.tar'.format(it), 'red')
예제 #5
0
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from datetime import datetime
from dataset import LoadDataset
from evalution_segmentaion import eval_semantic_segmentation
from Models import FCN
import cfg


device = t.device('cuda') if t.cuda.is_available() else t.device('cpu')
num_class = cfg.DATASET[1]

Load_train = LoadDataset([cfg.TRAIN_ROOT, cfg.TRAIN_LABEL], cfg.crop_size)
Load_val = LoadDataset([cfg.VAL_ROOT, cfg.VAL_LABEL], cfg.crop_size)

train_data = DataLoader(Load_train, batch_size=cfg.BATCH_SIZE, shuffle=True, num_workers=1)
val_data = DataLoader(Load_val, batch_size=cfg.BATCH_SIZE, shuffle=True, num_workers=1)


fcn = FCN.FCN(num_class)
fcn = fcn.to(device)
criterion = nn.NLLLoss().to(device)
optimizer = optim.Adam(fcn.parameters(), lr=1e-4)


def train(model):
    best = [0]
    net = model.train()
예제 #6
0
def train():
    param = _param()
    dataset = LoadDataset(opt)
    param.X_dim = dataset.feature_dim

    data_layer = FeatDataLayer(dataset.labels_train,
                               dataset.pfc_feat_data_train, opt)

    # initialize model
    netGs = []
    netDs = []
    parts = 6  #if opt.dataset == "CUB2011" else 6
    for part in range(parts):
        netGs.append(_netG(dataset.text_dim, 512).cuda().apply(weights_init))
        netDs.append(
            _netD(dataset.train_cls_num, 512).cuda().apply(weights_init))

    exp_info = 'CUB_EASY' if opt.splitmode == 'easy' else 'CUB_HARD'
    exp_params = 'Eu{}_Rls{}_RWz{}'.format(opt.CENT_LAMBDA, opt.REG_W_LAMBDA,
                                           opt.REG_Wz_LAMBDA)

    out_dir = 'out/{:s}'.format(exp_info)
    out_subdir = 'out/{:s}/{:s}'.format(exp_info, exp_params)
    if not os.path.exists('out'):
        os.mkdir('out')
    if not os.path.exists(out_dir):
        os.mkdir(out_dir)
    if not os.path.exists(out_subdir):
        os.mkdir(out_subdir)

    cprint(" The output dictionary is {}".format(out_subdir), 'red')
    log_dir = out_subdir + '/log_{:s}.txt'.format(exp_info)
    with open(log_dir, 'a') as f:
        f.write('Training Start:')
        f.write(strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) + '\n')

    start_step = 0

    part_cls_centrild = torch.from_numpy(
        dataset.part_cls_centrild.astype('float32')).cuda()

    # initialize optimizers
    optimizerGs = []
    optimizerDs = []
    for netG in netGs:
        optimizerGs.append(
            optim.Adam(netG.parameters(), lr=opt.lr, betas=(0.5, 0.9)))
    for netD in netDs:
        optimizerDs.append(
            optim.Adam(netD.parameters(), lr=opt.lr, betas=(0.5, 0.9)))

    for it in range(start_step, 3000 + 1):
        """ Discriminator """
        for _ in range(5):
            blobs = data_layer.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)  # class labels
            text_feat = np.array(
                [dataset.train_text_feature[i, :] for i in labels])
            text_feat = torch.from_numpy(text_feat.astype('float32')).cuda()
            X = torch.from_numpy(feat_data).cuda()
            y_true = torch.from_numpy(labels.astype('int')).cuda()
            z = torch.randn(opt.batchsize, param.z_dim).cuda()

            for part in range(parts):
                z = torch.randn(opt.batchsize, param.z_dim).cuda()
                D_real, C_real = netDs[part](X[:, part * 512:(part + 1) * 512])
                D_loss_real = torch.mean(D_real)
                C_loss_real = F.cross_entropy(C_real, y_true)
                DC_loss = -D_loss_real + C_loss_real
                DC_loss.backward()

                G_sample = netGs[part](z, text_feat)
                D_fake, C_fake = netDs[part](G_sample)
                D_loss_fake = torch.mean(D_fake)
                C_loss_fake = F.cross_entropy(C_fake, y_true)
                DC_loss = D_loss_fake + C_loss_fake
                DC_loss.backward()

                grad_penalty = calc_gradient_penalty(
                    netDs[part], X.data[:, part * 512:(part + 1) * 512],
                    G_sample.data)
                grad_penalty.backward()

                Wasserstein_D = D_loss_real - D_loss_fake
                # writer.add_scalar("Wasserstein_D"+str(part), Wasserstein_D.item(), it)

                optimizerDs[part].step()
                netGs[part].zero_grad()
                netDs[part].zero_grad()
        """ Generator """
        for _ in range(1):
            blobs = data_layer.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)  # class labels
            text_feat = np.array(
                [dataset.train_text_feature[i, :] for i in labels])
            text_feat = torch.from_numpy(text_feat.astype('float32')).cuda()

            X = torch.from_numpy(feat_data).cuda()
            y_true = torch.from_numpy(labels.astype('int')).cuda()

            for part in range(parts):
                z = torch.randn(opt.batchsize, param.z_dim).cuda()
                G_sample = netGs[part](z, text_feat)
                # G_sample_all[:, part*512:(part+1)*512] = G_sample
                D_fake, C_fake = netDs[part](G_sample)
                _, C_real = netDs[part](X[:, part * 512:(part + 1) * 512])

                G_loss = torch.mean(D_fake)
                C_loss = (F.cross_entropy(C_real, y_true) +
                          F.cross_entropy(C_fake, y_true)) / 2
                GC_loss = -G_loss + C_loss
                # writer.add_scalar("GC_loss"+str(part), GC_loss.item(), it)

                Euclidean_loss = torch.tensor([0.0]).cuda()
                if opt.REG_W_LAMBDA != 0:
                    for i in range(dataset.train_cls_num):
                        sample_idx = (y_true == i).data.nonzero().squeeze()
                        if sample_idx.numel() == 0:
                            Euclidean_loss += 0.0
                        else:
                            G_sample_cls = G_sample[sample_idx, :]
                            Euclidean_loss += (G_sample_cls.mean(dim=0) -
                                               part_cls_centrild[i][part]
                                               ).pow(2).sum().sqrt()
                    Euclidean_loss *= 1.0 / dataset.train_cls_num * opt.CENT_LAMBDA

                # ||W||_2 regularization
                reg_loss = torch.Tensor([0.0]).cuda()
                if opt.REG_W_LAMBDA != 0:

                    for name, p in netGs[part].named_parameters():
                        if 'weight' in name:
                            reg_loss += p.pow(2).sum()
                    reg_loss.mul_(opt.REG_W_LAMBDA)

                # writer.add_scalar("reg_loss"+str(part), reg_loss.item(), it)

                # ||W_z||21 regularization, make W_z sparse
                reg_Wz_loss = torch.Tensor([0.0]).cuda()
                if opt.REG_Wz_LAMBDA != 0:
                    Wz = netGs[part].rdc_text.weight
                    reg_Wz_loss = reg_Wz_loss + Wz.pow(2).sum(
                        dim=0).sqrt().sum().mul(opt.REG_Wz_LAMBDA)

                # writer.add_scalar("reg_Wz_loss"+str(part), reg_Wz_loss.item(), it)

                all_loss = GC_loss + Euclidean_loss + reg_loss + reg_Wz_loss
                all_loss.backward()
                optimizerGs[part].step()

        if it % opt.evl_interval == 0 and it >= 1000:
            print(it)
            for part in range(parts):
                netGs[part].eval()
            train_classifier(opt, param, dataset, netGs)
            for part in range(parts):
                netGs[part].train()
예제 #7
0
    def train(self):
        # 新建保存 checkpoint 的文件夹
        if not os.path.exists(self.checkpoint_save):
            os.makedirs(self.checkpoint_save)

        for epoch in range(epochs):
            print("=====This is Epoch =====", epoch)
            '''
            if epoch < 2:
                for idx, p in enumerate(self.model.parameters()):
                    if self.flag[idx] == 0:
                        p.requires_grad = False
            else:
                for idx, p in enumerate(self.model.parameters()):
                    p.requires_grad = True
            
            fixed = 1
            '''

            if epoch % decay == 0:
                for param_group in self.optimizer.param_groups:
                    param_group['lr'] = self.lr * 0.1
            self.lr = param_group['lr']
            print("learning rate : {}".format(
                self.optimizer.state_dict()['param_groups'][0]['lr']))
            learning_rate = str(
                self.optimizer.state_dict()['param_groups'][0]['lr'])

            dir_num = 0

            for dir in self.train_list:
                i = 0
                train_set = LoadDataset(dir)
                train_loader = DataLoader(train_set,
                                          batch_size=batch_size,
                                          num_workers=0,
                                          shuffle=True)

                for idx, train_data in enumerate(train_loader):
                    audio, gt = train_data
                    # print('Train : ', audio.shape, gt.shape)
                    # exit(0)
                    # torch.Size([bs, 3, f_num, 256, 320])
                    # torch.Size([bs, 3, f_num, 256, 320])
                    # torch.Size([bs, 1, 256, 320])

                    # image = Variable(image).cuda()
                    audio = Variable(audio).cuda()
                    gt = Variable(gt).cuda()

                    det = self.model(audio)
                    # print('Result : ', det.shape, gt.shape)
                    # exit(0)

                    # loss1 = obj_func(att, gt)
                    loss2 = obj_func(det, gt)
                    loss = loss2

                    self.optimizer.zero_grad()
                    loss.backward()
                    self.optimizer.step()
                    self.loss_dict.append(loss.item())

                    i += 1

                print(
                    'Epoch: [{}], Root_folder: {}, Frames: {}, Enumerate: {}\n=====Loss: {:.6f}=====\n'
                    .format(epoch, dir, len(train_set), i, loss.item()))
                '''
                dir_num += 1
                if dir_num == 500:
                    break
                '''
            if epoch % save_hop == 0:
                torch.save(
                    self.model.state_dict(),
                    os.path.join(
                        self.checkpoint_save, 'model_%s_%s_%s_%d_%s_%d.pth' %
                        (checkpoint_name, self.optimizer_name, learning_rate,
                         batch_size, self.func_name, epoch)))

        end_time = str(datetime.now())[11:13] + str(datetime.now())[14:16]
        save_name = './charts/' + self.optimizer_name + '_' + str(
            lr) + '_' + self.func_name + '_' + end_time + '.png'
        plt.title(self.optimizer_name + '_' + str(lr) + '_' + str(epochs) +
                  '_' + str(decay) + '_' + str(fixed) + end_time)
        plt.xlabel('batch')
        plt.ylabel('loss')

        plt.plot(self.loss_dict)
        plt.savefig(save_name)
        plt.show()
예제 #8
0
def train():
    param = _param()
    dataset = LoadDataset(opt)
    param.X_dim = dataset.feature_dim

    data_layer = FeatDataLayer(dataset.labels_train,
                               dataset.pfc_feat_data_train, opt)
    result = Result()
    result_gzsl = Result()
    netG = _netG(dataset.text_dim, dataset.feature_dim).cuda()
    netG.apply(weights_init)
    print(netG)
    netD = _netD(dataset.train_cls_num, dataset.feature_dim).cuda()
    netD.apply(weights_init)
    print(netD)

    exp_info = 'CUB_EASY' if opt.splitmode == 'easy' else 'CUB_HARD'
    exp_params = 'Eu{}_Rls{}_RWz{}'.format(opt.CENT_LAMBDA, opt.REG_W_LAMBDA,
                                           opt.REG_Wz_LAMBDA)

    train_dic = {}
    for i in range(len(dataset.labels_train)):
        try:
            train_dic[dataset.labels_train[i]].append(
                dataset.pfc_feat_data_train[i])
        except:
            train_dic[dataset.labels_train[i]] = [
                dataset.pfc_feat_data_train[i]
            ]

    out_dir = 'out/{:s}'.format(exp_info)
    out_subdir = 'out/{:s}/{:s}'.format(exp_info, exp_params)
    if not os.path.exists('out'):
        os.mkdir('out')
    if not os.path.exists(out_dir):
        os.mkdir(out_dir)
    if not os.path.exists(out_subdir):
        os.mkdir(out_subdir)

    cprint(" The output dictionary is {}".format(out_subdir), 'red')
    log_dir = out_subdir + '/log_{:s}.txt'.format(exp_info)
    with open(log_dir, 'a') as f:
        f.write('Training Start:')
        f.write(strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) + '\n')

    if opt.resume:
        if os.path.isfile(opt.resume):
            print("=> loading checkpoint '{}'".format(opt.resume))
            checkpoint = torch.load(opt.resume)
            netG.load_state_dict(checkpoint['state_dict_G'])
            netD.load_state_dict(checkpoint['state_dict_D'])
            start_step = checkpoint['it']
            print(checkpoint['log'])
        else:
            print("=> no checkpoint found at '{}'".format(opt.resume))

    nets = [netG, netD]

    tr_cls_centroid = Variable(
        torch.from_numpy(dataset.tr_cls_centroid.astype('float32'))).cuda()
    optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(0.5, 0.9))
    optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(0.5, 0.9))
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    unsupervisedData = UnsupervisedData(dataset.test_text_feature,
                                        dataset.labels_test,
                                        dataset.pfc_feat_data_test,
                                        dataset.train_cls_num)

    first = True if opt.resume != None else False
    class_increment = False

    while True:
        if not first:
            start_step = 0
            class_increment = False
            for it in range(start_step, 3000 + 1):
                """ Discriminator """
                for _ in range(5):
                    blobs = data_layer.forward()
                    feat_data = blobs['data']  # image data
                    labels = blobs['labels'].astype(int)  # class labels
                    text_feat = np.array(
                        [dataset.train_text_feature[i, :] for i in labels])
                    text_feat = Variable(
                        torch.from_numpy(text_feat.astype('float32'))).cuda()
                    np.unique(labels)
                    X = Variable(torch.from_numpy(feat_data)).cuda()
                    y_true = Variable(torch.from_numpy(
                        labels.astype('int'))).cuda()
                    z = Variable(torch.randn(opt.batchsize,
                                             param.z_dim)).cuda()
                    y_true = y_true.to(device=device, dtype=torch.long)

                    # GAN's D loss
                    D_real, C_real = netD(X)
                    D_loss_real = torch.mean(D_real)
                    # print(C_real)
                    # print(y_true)
                    C_loss_real = F.cross_entropy(C_real, y_true)
                    DC_loss = -D_loss_real + C_loss_real
                    DC_loss.backward()

                    # GAN's D loss
                    G_sample = netG(z, text_feat).detach()
                    D_fake, C_fake = netD(G_sample)
                    D_loss_fake = torch.mean(D_fake)
                    C_loss_fake = F.cross_entropy(C_fake, y_true)
                    DC_loss = D_loss_fake + C_loss_fake
                    DC_loss.backward()

                    # train with gradient penalty (WGAN_GP)
                    grad_penalty = calc_gradient_penalty(
                        netD, X.data, G_sample.data)
                    grad_penalty.backward()

                    Wasserstein_D = D_loss_real - D_loss_fake
                    optimizerD.step()
                    reset_grad(nets)
                """ Generator """
                for _ in range(1):
                    blobs = data_layer.forward()
                    feat_data = blobs['data']  # image data, 最小批的图片数据
                    labels = blobs['labels'].astype(
                        int)  # class labels, 图片对应的标签
                    text_feat = np.array(
                        [dataset.train_text_feature[i, :] for i in labels])
                    text_feat = Variable(
                        torch.from_numpy(
                            text_feat.astype('float32'))).cuda()  # 获取对应的文本
                    anchor_text_feat = Variable(
                        torch.from_numpy(
                            dataset.train_text_feature.astype(
                                'float32'))).cuda()

                    X = Variable(torch.from_numpy(feat_data)).cuda()
                    y_true = Variable(torch.from_numpy(
                        labels.astype('int'))).cuda()
                    y_true = y_true.to(device=device, dtype=torch.long)
                    z = Variable(torch.randn(opt.batchsize,
                                             param.z_dim)).cuda()
                    anchor_z = Variable(
                        torch.randn(len(dataset.train_text_feature),
                                    param.z_dim)).cuda()

                    G_sample = netG(z, text_feat)
                    D_fake, C_fake = netD(G_sample)
                    _, C_real = netD(X)

                    # GAN's G loss
                    G_loss = torch.mean(D_fake)
                    # Auxiliary classification loss
                    C_loss = (F.cross_entropy(C_real, y_true) +
                              F.cross_entropy(C_fake, y_true)) / 2

                    GC_loss = -G_loss + C_loss

                    # Centroid loss
                    Euclidean_loss_1 = Variable(torch.Tensor([0.0])).cuda()
                    Euclidean_loss_2 = Variable(torch.Tensor([0.0])).cuda()

                    if opt.CENT_LAMBDA != 0:
                        for i in range(dataset.train_cls_num):
                            sample_idx = (y_true == i).data.nonzero().squeeze()
                            try:
                                eq_idx_len = sample_idx.shape[0]
                            except:
                                eq_idx_len = 0
                            if sample_idx.numel() == 0:
                                Euclidean_loss_1 += 0.0
                            else:
                                G_sample_cls = G_sample[sample_idx, :]
                                Euclidean_loss_1 += (
                                    G_sample_cls.mean(dim=0) -
                                    tr_cls_centroid[i]).pow(2).sum().sqrt()

                            sample_idx = (y_true != i).data.nonzero().squeeze()
                            try:
                                sample_idx = random.sample(
                                    sample_idx, eq_idx_len)
                            except:
                                pass
                            if eq_idx_len == 0:
                                Euclidean_loss_2 += 0.0
                            else:
                                G_sample_cls = G_sample[sample_idx, :]
                                Euclidean_loss_2 += (
                                    G_sample_cls.mean(dim=0) -
                                    tr_cls_centroid[i]).pow(2).sum().sqrt()
                        Euclidean_loss_1 *= 1.0 / dataset.train_cls_num * opt.CENT_LAMBDA
                        Euclidean_loss_2 *= 1.0 / dataset.train_cls_num * opt.CENT_LAMBDA

                    Euclidean_loss = Euclidean_loss_1 - Euclidean_loss_2

                    # ||W||_2 regularization
                    reg_loss = Variable(torch.Tensor([0.0])).cuda()
                    if opt.REG_W_LAMBDA != 0:
                        for name, p in netG.named_parameters():
                            if 'weight' in name:
                                reg_loss += p.pow(2).sum()
                        reg_loss.mul_(opt.REG_W_LAMBDA)

                    # ||W_z||21 regularization, make W_z sparse
                    reg_Wz_loss = Variable(torch.Tensor([0.0])).cuda()
                    if opt.REG_Wz_LAMBDA != 0:
                        Wz = netG.rdc_text.weight
                        reg_Wz_loss = Wz.pow(2).sum(dim=0).sqrt().sum().mul(
                            opt.REG_Wz_LAMBDA)

                    anchor = netG(anchor_z, anchor_text_feat)
                    triplet_loss = cal_triplets_loss(anchor, train_dic,
                                                     opt.margin)

                    all_loss = GC_loss + Euclidean_loss + reg_loss + reg_Wz_loss + triplet_loss
                    all_loss.backward()
                    optimizerG.step()
                    reset_grad(nets)

                if it % opt.disp_interval == 0 and it:
                    acc_real = (np.argmax(C_real.data.cpu().numpy(), axis=1)
                                == y_true.data.cpu().numpy()).sum() / float(
                                    y_true.data.size()[0])
                    acc_fake = (np.argmax(C_fake.data.cpu().numpy(), axis=1)
                                == y_true.data.cpu().numpy()).sum() / float(
                                    y_true.data.size()[0])

                    log_text = 'Iter-{}; Was_D: {:.4}; Euc_triplet_ls: {:.4}; reg_ls: {:.4}; Wz_ls: {:.4}; G_loss: {:.4}; D_loss_real: {:.4};' \
                               ' D_loss_fake: {:.4}; rl: {:.4}%; fk: {:.4}%'\
                                .format(it,
                                        Wasserstein_D.item(),
                                        Euclidean_loss.item()+triplet_loss.item(),
                                        reg_loss.item(),
                                        reg_Wz_loss.item(),
                                        G_loss.item(),
                                        D_loss_real.item(),
                                        D_loss_fake.item(),
                                        acc_real * 100, acc_fake * 100)
                    print(log_text)
                    with open(log_dir, 'a') as f:
                        f.write(log_text + '\n')

                if it % opt.evl_interval == 0 and it >= 100:
                    netG.eval()
                    eval_fakefeat_test(it, netG, dataset, param, result)
                    eval_fakefeat_GZSL(it, netG, dataset, param, result_gzsl)
                    if result.save_model:
                        files2remove = glob.glob(out_subdir + '/Best_model*')
                        for _i in files2remove:
                            os.remove(_i)
                        torch.save(
                            {
                                'it': it + 1,
                                'state_dict_G': netG.state_dict(),
                                'state_dict_D': netD.state_dict(),
                                'random_seed': opt.manualSeed,
                                'log': log_text,
                            },
                            out_subdir + '/Best_model_Acc_{:.2f}.tar'.format(
                                result.acc_list[-1]))
                    netG.train()

                if it % opt.save_interval == 0 and it:
                    torch.save(
                        {
                            'it': it + 1,
                            'state_dict_G': netG.state_dict(),
                            'state_dict_D': netD.state_dict(),
                            'random_seed': opt.manualSeed,
                            'log': log_text,
                        }, out_subdir + '/Iter_{:d}.tar'.format(it))
                    cprint(
                        'Save model to ' + out_subdir +
                        '/Iter_{:d}.tar'.format(it), 'red')

        first = False

        # semi-supervised
        text_feat = Variable(
            torch.from_numpy(
                unsupervisedData.text_feature.astype('float32'))).cuda()
        z = Variable(torch.randn(text_feat.shape[0], param.z_dim)).cuda()
        text_feat = netG(z, text_feat).data.cpu().numpy()

        model = KNeighborsClassifier(50)
        model.fit(text_feat, unsupervisedData.labels)

        y_pro = model.predict_proba(unsupervisedData.image_feature)
        y = model.predict(unsupervisedData.image_feature)
        probabilities = y_pro[:, np.argsort(y_pro)[::, -1][0]]
        selectedHighConvinceIndex = list(
            np.where(probabilities >= opt.confidence)[0])
        selectedHighConvinceIndex_y = y[selectedHighConvinceIndex]
        print("select high confidence number : " +
              str(len(selectedHighConvinceIndex)))

        for i, label in enumerate(selectedHighConvinceIndex_y):

            if label in unsupervisedData.unsupervised_label_mapping:
                label = unsupervisedData.unsupervised_label_mapping[label]

                insertIndex = np.where(dataset.labels_train == label)[0][0]
                dataset.labels_train = np.insert(dataset.labels_train,
                                                 insertIndex,
                                                 values=label,
                                                 axis=0)
                dataset.pfc_feat_data_train = np.insert(
                    dataset.pfc_feat_data_train,
                    insertIndex,
                    values=unsupervisedData.image_feature[
                        selectedHighConvinceIndex[i]],
                    axis=0)
                train_dic[label].append(unsupervisedData.image_feature[
                    selectedHighConvinceIndex[i]])

            else:
                unsupervisedData.unsupervised_label_mapping[
                    label] = unsupervisedData.label_index
                unsupervisedData.label_index += 1
                label = unsupervisedData.unsupervised_label_mapping[label]

                dataset.labels_train = np.hstack(
                    [dataset.labels_train, [label]])
                dataset.pfc_feat_data_train = np.vstack([
                    dataset.pfc_feat_data_train,
                    [
                        unsupervisedData.image_feature[
                            selectedHighConvinceIndex[i]]
                    ]
                ])
                dataset.train_text_feature = np.vstack([
                    dataset.train_text_feature,
                    [
                        unsupervisedData.text_feature[
                            selectedHighConvinceIndex[i]]
                    ]
                ])
                train_dic[label] = [
                    unsupervisedData.image_feature[
                        selectedHighConvinceIndex[i]]
                ]

                dataset.train_cls_num += 1
                class_increment = True

        unsupervisedData.text_feature = np.delete(
            unsupervisedData.text_feature, selectedHighConvinceIndex, axis=0)
        unsupervisedData.image_feature = np.delete(
            unsupervisedData.image_feature, selectedHighConvinceIndex, axis=0)
        unsupervisedData.labels = np.delete(unsupervisedData.labels,
                                            selectedHighConvinceIndex,
                                            axis=0)

        dataset.tr_cls_centroid = np.zeros(
            [dataset.train_cls_num,
             dataset.pfc_feat_data_train.shape[1]]).astype(np.float32)
        for i in range(dataset.train_cls_num):
            dataset.tr_cls_centroid[i] = np.mean(
                dataset.pfc_feat_data_train[dataset.labels_train == i], axis=0)
        tr_cls_centroid = Variable(
            torch.from_numpy(
                dataset.tr_cls_centroid.astype('float32'))).cuda()

        if class_increment:
            del netD
            netD = _netD(dataset.train_cls_num, dataset.feature_dim).cuda()
            netD.apply(weights_init)
            netG = _netG(dataset.text_dim, dataset.feature_dim).cuda()
            netG.apply(weights_init)

            optimizerD = optim.Adam(netD.parameters(),
                                    lr=opt.lr,
                                    betas=(0.5, 0.9))
            optimizerG = optim.Adam(netG.parameters(),
                                    lr=opt.lr,
                                    betas=(0.5, 0.9))

            nets = [netG, netD]

            print(netG)
            print(netD)
        data_layer = FeatDataLayer(dataset.labels_train,
                                   dataset.pfc_feat_data_train, opt)
예제 #9
0
    # model = UNet()
    # serializers.load_npz(C.PATH_MODEL / "unet.model", model)

    run_num = args.runnum
    data_len = args.datalength
    epoch = args.epoch
    lr = args.learningrate
    shuffle = True if args.shuffle == 1 else False
    gpu_id = args.gpuid

    for i in range(1, 1 + run_num):
        print("{} / {} loop".format(i, run_num))

        # データロード
        X, Y = LoadDataset(length=data_len,
                           offset=(i - 1) * data_len,
                           shuffle=shuffle)
        print("Dataset loaded.")

        # 学習
        model, _ = \
            TrainUNet(
                X=X,
                Y=Y,
                model_=model,
                optimizer_=optimizer,
                epoch=epoch,
                earlystop=False,
                alpha=lr,
                loop=i,
                gpu_id=gpu_id)
예제 #10
0
parser.add_argument('--pretrained', action='store_false', default=True)
parser.add_argument('--load', default='', type=str)
parser.add_argument('--name', default='', type=str)
parser.add_argument('--start', type=int, default=0)

params = parser.parse_args()

data_dir = params.data_path

if params.name == '':
    params.name = data_dir.split('/')[-1]
    if params.name == '':
        params.name = data_dir.split('/')[-2]

dataloaders = {
    x: LoadDataset(x, data_dir, batch_size=10, n_jobs=6)
    for x in ['train', 'val']
}

os.makedirs(os.path.join('log', params.name), exist_ok=True)
logger = SummaryWriter(os.path.join('log', params.name))

device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")

os.makedirs(os.path.join('ckpt', params.name), exist_ok=True)
ckpt_dir = os.path.join('ckpt', params.name)


def train_model(model,
                criterion,
                optimizer,
예제 #11
0
def train():
    start_time = time.time()
    param = _param()
    dataset = LoadDataset(opt)
    param.X_dim = dataset.feature_dim

    data_layer = FeatDataLayer(dataset.labels_train, dataset.pfc_feat_data_train, dataset.seen_label_mapping, opt)
    result = Result()
    result_gzsl = Result()
    netG = _netG(dataset.text_dim, dataset.feature_dim).cuda()
    netG.apply(weights_init)

    print(netG)
    netD = _netD(dataset.train_cls_num + dataset.test_cls_num, dataset.feature_dim).cuda()
    netD.apply(weights_init)
    print(netD)

    exp_info = 'CUB_EASY' if opt.splitmode == 'easy' else 'CUB_HARD'
    exp_params = 'Eu{}_Rls{}_RWz{}'.format(opt.CENT_LAMBDA , opt.REG_W_LAMBDA, opt.REG_Wz_LAMBDA)

    out_dir  = 'out_' + str(opt.epsilon) + '/{:s}'.format(exp_info)
    out_subdir = 'out_' + str(opt.epsilon) + '/{:s}/{:s}'.format(exp_info, exp_params)

    if not os.path.exists('out_' + str(opt.epsilon) ):
        os.mkdir('out_' + str(opt.epsilon))
    if not os.path.exists(out_dir):
        os.mkdir(out_dir)
    if not os.path.exists(out_subdir):
        os.mkdir(out_subdir)

    cprint(" The output dictionary is {}".format(out_subdir), 'red')
    log_dir  = out_subdir + '/log_{:s}.txt'.format(exp_info)
        
    with open(log_dir, 'a') as f:
        f.write('Training Start:')
        f.write(strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) + '\n')
        f.write("Running Parameter Logs")
        f.write(runing_parameters_logs)
        
    start_step = 0

    if opt.resume:
        if os.path.isfile(opt.resume):
            print("=> loading checkpoint '{}'".format(opt.resume))
            checkpoint = torch.load(opt.resume)
            netG.load_state_dict(checkpoint['state_dict_G'])
            netD.load_state_dict(checkpoint['state_dict_D'])
            start_step = checkpoint['it']
            print(checkpoint['log'])
            log_text = checkpoint['log']
        else:
            print("=> no checkpoint found at '{}'".format(opt.resume))

    nets = [netG, netD]

    tr_cls_centroid = Variable(torch.from_numpy(dataset.tr_cls_centroid.astype('float32'))).cuda()
    optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(0.5, 0.9))
    optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(0.5, 0.9))
    
    for it in range(start_step, 5000+1):
        if it > opt.mode_change: 
            train_text = Variable(torch.from_numpy(dataset.train_text_feature.astype('float32'))).cuda()
            test_text = Variable(torch.from_numpy(dataset.test_text_feature.astype('float32'))).cuda()
            z_train = Variable(torch.randn(dataset.train_cls_num, param.z_dim)).cuda()
            z_test = Variable(torch.randn(dataset.test_cls_num, param.z_dim)).cuda()
            
            _, train_text_feature = netG(z_train, train_text) 
            _, test_text_feature = netG(z_test, test_text) 

            dataset.semantic_similarity_check(opt.Knn, train_text_feature.data.cpu().numpy(), test_text_feature.data.cpu().numpy())

        """ Discriminator """
        for _ in range(5):
            blobs = data_layer.forward()
            feat_data = blobs['data']              # image data
            labels = blobs['labels'].astype(int)   # class labels
            true_labels = blobs['true_labels'].astype(int)

            text_feat = np.array([dataset.train_text_feature[i,:] for i in labels])
            text_feat = Variable(torch.from_numpy(text_feat.astype('float32'))).cuda()
            X = Variable(torch.from_numpy(feat_data)).cuda()
            y_true = Variable(torch.from_numpy(true_labels.astype('int'))).cuda()
            
            z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()

            # GAN's D loss
            D_real, C_real = netD(X)
            D_loss_real = torch.mean(D_real)
            C_loss_real = F.cross_entropy(C_real, y_true)
            DC_loss = -D_loss_real + C_loss_real
            DC_loss.backward()

            # GAN's D loss
            G_sample, _ = netG(z, text_feat) 
            D_fake, C_fake = netD(G_sample)
            D_loss_fake = torch.mean(D_fake)
            C_loss_fake = F.cross_entropy(C_fake, y_true)
            DC_loss = D_loss_fake + C_loss_fake
            DC_loss.backward()

            # train with gradient penalty (WGAN_GP)
            grad_penalty = calc_gradient_penalty(netD, X.data, G_sample.data)
            grad_penalty.backward()

            Wasserstein_D = D_loss_real - D_loss_fake
            optimizerD.step()
            reset_grad(nets)
            
        """ Generator """
        for _ in range(1):            
            blobs = data_layer.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)  # class labels
            true_labels = blobs['true_labels'].astype(int) #True seen label class 

            text_feat = np.array([dataset.train_text_feature[i, :] for i in labels])
            text_feat = Variable(torch.from_numpy(text_feat.astype('float32'))).cuda()

            X = Variable(torch.from_numpy(feat_data)).cuda()
            y_true = Variable(torch.from_numpy(true_labels.astype('int'))).cuda()
            y_dummy = Variable(torch.from_numpy(labels.astype('int'))).cuda()

            z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()

            G_sample, _ = netG(z, text_feat)
            D_fake, C_fake = netD(G_sample)
            _,      C_real = netD(X)

            # GAN's G loss
            G_loss = torch.mean(D_fake)
            # Auxiliary classification loss
            C_loss = (F.cross_entropy(C_real, y_true) + F.cross_entropy(C_fake, y_true))/2 

            GC_loss = -G_loss + C_loss
            
            # Centroid loss
            Euclidean_loss = Variable(torch.Tensor([0.0])).cuda()
            Correlation_loss = Variable(torch.Tensor([0.0])).cuda()

            if opt.CENT_LAMBDA != 0:
                for i in range(dataset.train_cls_num):
                    sample_idx = (y_dummy == i).data.nonzero().squeeze()
                    if sample_idx.numel() == 0:
                        Euclidean_loss += 0.0
                    else:                        
                        G_sample_cls = G_sample[sample_idx, :]
                        if sample_idx.numel() != 1:
                            generated_mean = G_sample_cls.mean(dim=0) 
                        else:
                            generated_mean = G_sample_cls

                        Euclidean_loss += (generated_mean - tr_cls_centroid[i]).pow(2).sum().sqrt()

                        for n in range(dataset.Neighbours):                            
                            Neighbor_correlation = cosine_similarity(generated_mean.data.cpu().numpy().reshape((1, dataset.feature_dim)), 
                                                    tr_cls_centroid[dataset.idx_mat[i,n]].data.cpu().numpy().reshape((1, dataset.feature_dim)))

                            lower_limit = dataset.semantic_similarity_seen [i,n] - opt.epsilon
                            upper_limit = dataset.semantic_similarity_seen [i,n] + opt.epsilon

                            lower_limit = torch.as_tensor(lower_limit.astype('float')) 
                            upper_limit = torch.as_tensor(upper_limit.astype('float')) 
                            corr = torch.as_tensor(Neighbor_correlation[0][0].astype('float'))
                            margin = (torch.max(corr- corr, corr - upper_limit))**2 + (torch.max(corr- corr, lower_limit - corr ))**2 
                            Correlation_loss += margin           
                                                
                Euclidean_loss *= 1.0/dataset.train_cls_num * opt.CENT_LAMBDA
                Correlation_loss = Correlation_loss * opt.correlation_penalty

            # ||W||_2 regularization
            reg_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_W_LAMBDA != 0:
                for name, p in netG.named_parameters():
                    if 'weight' in name:
                        reg_loss += p.pow(2).sum()
                reg_loss.mul_(opt.REG_W_LAMBDA)

            # ||W_z||21 regularization, make W_z sparse
            reg_Wz_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_Wz_LAMBDA != 0:
                Wz = netG.rdc_text.weight
                reg_Wz_loss = Wz.pow(2).sum(dim=0).sqrt().sum().mul(opt.REG_Wz_LAMBDA)

            all_loss = GC_loss + Euclidean_loss + reg_loss + reg_Wz_loss + Correlation_loss
            all_loss.backward()
            optimizerG.step()
            reset_grad(nets)

        if (it > opt.unseen_start):
            for _ in range(1):
                # Zero shot Discriminator is training 
                zero_shot_labels = np.random.randint(dataset.test_cls_num, size = opt.zeroshotbatchsize).astype(int)
                zero_shot_true_labels = np.array([dataset.unseen_label_mapping[i] for i in zero_shot_labels])
                zero_text_feat = np.array([dataset.test_text_feature[i,:] for i in zero_shot_labels])
                
                zero_text_feat = Variable(torch.from_numpy(zero_text_feat.astype('float32'))).cuda()
                zero_y_true = Variable(torch.from_numpy(zero_shot_true_labels.astype('int'))).cuda()
                z = Variable(torch.randn(opt.zeroshotbatchsize, param.z_dim)).cuda()

                # GAN's D loss
                G_sample_zero, _ = netG(z, zero_text_feat)
                _, C_fake_zero = netD(G_sample_zero)
                C_loss_fake_zero = F.cross_entropy(C_fake_zero, zero_y_true)
                C_loss_fake_zero.backward()

                optimizerD.step()
                reset_grad(nets)
                
            for _ in range(1):
                # Zero shot Generator is training 
                zero_shot_labels = np.random.randint(dataset.test_cls_num, size = opt.zeroshotbatchsize).astype(int)
                zero_shot_true_labels = np.array([dataset.unseen_label_mapping[i] for i in zero_shot_labels])
                zero_text_feat = np.array([dataset.test_text_feature[i,:] for i in zero_shot_labels])
                
                zero_text_feat = Variable(torch.from_numpy(zero_text_feat.astype('float32'))).cuda()
                zero_y_true = Variable(torch.from_numpy(zero_shot_true_labels.astype('int'))).cuda()
                y_dummy_zero = Variable(torch.from_numpy(zero_shot_labels.astype('int'))).cuda()
                z = Variable(torch.randn(opt.zeroshotbatchsize, param.z_dim)).cuda()

                # GAN's D loss
                G_sample_zero, _ = netG(z, zero_text_feat)
                _, C_fake_zero  = netD(G_sample_zero)
                C_loss_fake_zero = F.cross_entropy(C_fake_zero, zero_y_true)
                
                Correlation_loss_zero = Variable(torch.Tensor([0.0])).cuda()

                if opt.CENT_LAMBDA != 0:
                    for i in range(dataset.test_cls_num):
                        sample_idx = (y_dummy_zero == i).data.nonzero().squeeze()
                        if sample_idx.numel() != 0:
                            G_sample_cls = G_sample_zero[sample_idx, :]
                            
                            if sample_idx.numel() != 1:
                                generated_mean = G_sample_cls.mean(dim=0) 
                            else:
                                generated_mean = G_sample_cls

                            for n in range(dataset.Neighbours):                            
                                Neighbor_correlation = cosine_similarity(generated_mean.data.cpu().numpy().reshape((1, dataset.feature_dim)), 
                                                        tr_cls_centroid[dataset.unseen_idx_mat[i,n]].data.cpu().numpy().reshape((1, dataset.feature_dim)))
                                
                                lower_limit = dataset.semantic_similarity_unseen [i,n] - opt.epsilon
                                upper_limit = dataset.semantic_similarity_unseen [i,n] + opt.epsilon

                                lower_limit = torch.as_tensor(lower_limit.astype('float')) 
                                upper_limit = torch.as_tensor(upper_limit.astype('float')) 
                                corr = torch.as_tensor(Neighbor_correlation[0][0].astype('float'))

                                margin = (torch.max(corr- corr, corr - upper_limit))**2 + (torch.max(corr- corr, lower_limit - corr ))**2 
                    
                                Correlation_loss_zero += margin           

                    Correlation_loss_zero = Correlation_loss_zero *opt.correlation_penalty

                # ||W||_2 regularization
                reg_loss_zero = Variable(torch.Tensor([0.0])).cuda()
                if opt.REG_W_LAMBDA != 0:
                    for name, p in netG.named_parameters():
                        if 'weight' in name:
                            reg_loss_zero += p.pow(2).sum()
                    reg_loss_zero.mul_(opt.REG_W_LAMBDA)

                # ||W_z||21 regularization, make W_z sparse
                reg_Wz_loss_zero = Variable(torch.Tensor([0.0])).cuda()
                if opt.REG_Wz_LAMBDA != 0:
                    Wz = netG.rdc_text.weight
                    reg_Wz_loss_zero = Wz.pow(2).sum(dim=0).sqrt().sum().mul(opt.REG_Wz_LAMBDA)

                all_loss = C_loss_fake_zero +  reg_loss_zero + reg_Wz_loss_zero + Correlation_loss_zero 
                all_loss.backward()
                optimizerG.step()
                reset_grad(nets)
            
        if it % opt.disp_interval == 0 and it:
            acc_real = (np.argmax(C_real.data.cpu().numpy(), axis=1) == y_true.data.cpu().numpy()).sum() / float(y_true.data.size()[0])
            acc_fake = (np.argmax(C_fake.data.cpu().numpy(), axis=1) == y_true.data.cpu().numpy()).sum() / float(y_true.data.size()[0])
            
            log_text = 'Iter-{}; Was_D: {:.4}; Euc_ls: {:.4};reg_ls: {:.4}; Wz_ls: {:.4}; G_loss: {:.4}; Correlation_loss : {:.4} ; D_loss_real: {:.4};' \
                       ' D_loss_fake: {:.4}; rl: {:.4}%; fk: {:.4}%'.format(it, Wasserstein_D.item(),  Euclidean_loss.item(), reg_loss.item(), reg_Wz_loss.item(),
                                G_loss.item(), Correlation_loss.item() , D_loss_real.item(), D_loss_fake.item(), acc_real * 100, acc_fake * 100)
            
            log_text1 = ""
            if it > opt.unseen_start :
                acc_fake_zero = (np.argmax(C_fake_zero.data.cpu().numpy(), axis=1) == zero_y_true.data.cpu().numpy()).sum() / float(zero_y_true.data.size()[0])

                log_text1 = 'Zero_Shot_Iter-{}; Correlation_loss : {:.4}; fk: {:.4}%'.format(it,  
                                    Correlation_loss_zero.item(), acc_fake_zero * 100)
                
            '''
            Here I have added .item instead of the .data[0] - Maunil 
            '''
            
            print(log_text)
            print (log_text1)
            with open(log_dir, 'a') as f:
                f.write(log_text+'\n')
                f.write(log_text1+'\n')
                
        if it % opt.evl_interval == 0 and it >=80 and log_text != None:
            netG.eval()    # This will start the testing process, no batch norm and drop out - It will disable them
            eval_fakefeat_test(it, netG, netD, dataset, param, result)
            eval_fakefeat_GZSL(it, netG, dataset, param, result_gzsl)

            if result.save_model:
                files2remove = glob.glob(out_subdir + '/Best_model*')
                for _i in files2remove:
                    os.remove(_i)
                torch.save({
                    'it': it + 1,
                    'state_dict_G': netG.state_dict(),
                    'state_dict_D': netD.state_dict(),
                    'random_seed': opt.manualSeed,
                    'log': log_text,
                    'Zero Shot Acc' : result.acc_list[-1],
                    'Generalized Zero Shot Acc' :  result_gzsl.acc_list[-1]
                }, out_subdir + '/Best_model_Acc_' + str(result.acc_list[-1])  + '_AUC_' + str(result_gzsl.acc_list[-1])  + '_' +'.tar')
            netG.train()  

        if it % opt.save_interval == 0 and it:
            torch.save({
                    'it': it + 1,
                    'state_dict_G': netG.state_dict(),
                    'state_dict_D': netD.state_dict(),
                    'random_seed': opt.manualSeed,
                    'log': log_text,
                    'Zero Shot Acc' : result.acc_list[-1],
                    'Generalized Zero Shot Acc' : result_gzsl.acc_list[-1]
                },  out_subdir + '/Iter_{:d}.tar'.format(it))
            cprint('Save model to ' + out_subdir + '/Iter_{:d}.tar'.format(it), 'red')

    print ("########################################################")
    print("--- %s Time took seconds ---" % (time.time() - start_time))
    print ("########################################################")
예제 #12
0
import torch as t
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from eval_semantic_segmentation import eval_semantic_segmentation
from dataset import LoadDataset
from Models import FCN
import cfg

device = t.device('cuda') if t.cuda.is_available() else t.device('cpu')
num_class = cfg.DATASET[1]

BATCH_SIZE = 4
miou_list = [0]

Load_test = LoadDataset([cfg.TEST_ROOT, cfg.TEST_LABEL], cfg.crop_size)
test_data = DataLoader(Load_test,
                       batch_size=BATCH_SIZE,
                       shuffle=False,
                       num_workers=4)

net = FCN.FCN(num_class)
net.eval()
net.to(device)
net.load_state_dict(t.load("./Results/weights/xxx.pth"))

train_acc = 0
train_miou = 0
train_class_acc = 0
train_mpa = 0
error = 0
예제 #13
0
def train(model_num=3,
          is_val=True,
          sim_func_number=None,
          creative_weight=None):
    param = _param(opt.z_dim)
    best_model_acc_path = best_model_auc_path = best_model_hm_path = ''
    if opt.dataset == 'CUB':
        dataset = LoadDataset(opt, main_dir, is_val)
        exp_info = 'CUB_EASY' if opt.splitmode == 'easy' else 'CUB_HARD'
        opt.is_gbu = False
    elif opt.dataset == 'NAB':
        dataset = LoadDataset_NAB(opt, main_dir, is_val)
        exp_info = 'NAB_EASY' if opt.splitmode == 'easy' else 'NAB_HARD'
        opt.is_gbu = False
    elif "GBU" in opt.dataset:
        opt.dataset = opt.dataset.split('_')[1]
        opt.is_gbu = True
        exp_info = opt.dataset
        dataset = LoadDataset_GBU(opt, main_dir, is_val)
    else:
        print('No Dataset with that name')
        sys.exit(0)
    param.X_dim = dataset.feature_dim

    data_layer = FeatDataLayer(np.array(dataset.train_label),
                               np.array(dataset.train_feature), opt)
    result = Result()

    ones = Variable(torch.Tensor(1, 1))
    ones.data.fill_(1.0)

    if opt.is_gbu:
        netG = _netG_att(param, dataset.text_dim, dataset.feature_dim).cuda()
    else:
        netG = _netG(dataset.text_dim, dataset.feature_dim).cuda()
    netG.apply(weights_init)
    netD = _netD(dataset.train_cls_num, dataset.feature_dim).cuda()
    netD.apply(weights_init)

    if model_num == 2 or model_num == 4:
        log_SM_ab = Scale(2)
        log_SM_ab = nn.DataParallel(log_SM_ab).cuda()
    if model_num == 3 or model_num == 4:
        netT = _netT(dataset.train_cls_num, dataset.feature_dim,
                     dataset.text_dim).cuda()
        netT.apply(weights_init)

    similarity_func = None
    if sim_func_number == 1:
        similarity_func = F.cosine_similarity
    elif sim_func_number == 2:
        similarity_func = F.mse_loss

    exp_params = 'Model_{}_is_val_{}_sim_func_number_{}_creative_weight_{}_lr_{}_zdim_{}_{}'.format(
        model_num, is_val, sim_func_number, creative_weight, opt.lr,
        param.z_dim, opt.exp_name)

    out_subdir = main_dir + 'out/{:s}/{:s}'.format(exp_info, exp_params)
    if not os.path.exists(out_subdir):
        os.makedirs(out_subdir)

    log_dir = out_subdir + '/log_{:s}.txt'.format(exp_info)
    log_dir_2 = out_subdir + '/log_{:s}_iterations.txt'.format(exp_info)
    with open(log_dir, 'a') as f:
        f.write('Training Start:')
        f.write(strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) + '\n')

    start_step = 0

    if opt.resume:
        if os.path.isfile(opt.resume):
            print("=> loading checkpoint '{}'".format(opt.resume))
            checkpoint = torch.load(opt.resume)
            netG.load_state_dict(checkpoint['state_dict_G'])
            netD.load_state_dict(checkpoint['state_dict_D'])
            if model_num == 3 or model_num == 4:
                netT.load_state_dict(checkpoint['state_dict_T'])
            start_step = checkpoint['it']
            print(checkpoint['log'])
        else:
            print("=> no checkpoint found at '{}'".format(opt.resume))

    if model_num == 1:
        nets = [netG, netD]
    elif model_num == 2:
        nets = [netG, netD, log_SM_ab]
    elif model_num == 3:
        nets = [netG, netD, netT]
    elif model_num == 4:
        nets = [netG, netD, netT, log_SM_ab]

    tr_cls_centroid = Variable(
        torch.from_numpy(dataset.tr_cls_centroid.astype('float32'))).cuda()
    optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(0.5, 0.9))
    optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(0.5, 0.9))

    if model_num == 2 or model_num == 4:
        optimizer_SM_ab = optim.Adam(log_SM_ab.parameters(),
                                     lr=opt.lr,
                                     betas=(0.5, 0.999))
    if model_num == 3 or model_num == 4:
        optimizerT = optim.Adam(netT.parameters(), lr=opt.lr, betas=(0.5, 0.9))

    for it in tqdm(range(start_step, 5000 + 1)):
        blobs = data_layer.forward()
        labels = blobs['labels'].astype(int)
        new_class_labels = Variable(
            torch.from_numpy(np.ones_like(labels) *
                             dataset.train_cls_num)).cuda()
        text_feat_1 = np.array([dataset.train_att[i, :] for i in labels])
        text_feat_2 = np.array([dataset.train_att[i, :] for i in labels])
        np.random.shuffle(
            text_feat_1
        )  # Shuffle both features to guarantee different permutations
        np.random.shuffle(text_feat_2)
        alpha = (np.random.random(len(labels)) * (.8 - .2)) + .2

        text_feat_mean = np.multiply(alpha, text_feat_1.transpose())
        text_feat_mean += np.multiply(1. - alpha, text_feat_2.transpose())
        text_feat_mean = text_feat_mean.transpose()
        text_feat_mean = normalize(text_feat_mean, norm='l2', axis=1)
        text_feat_Creative = Variable(
            torch.from_numpy(text_feat_mean.astype('float32'))).cuda()
        # z_creative = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()
        # G_creative_sample = netG(z_creative, text_feat_Creative)

        if model_num == 3 or model_num == 4:
            """ Text Feat Generator """
            for _ in range(5):
                blobs = data_layer.forward()
                feat_data = blobs['data']  # image data
                labels = blobs['labels'].astype(int)  # class labels

                text_feat = np.array([dataset.train_att[i, :] for i in labels])
                text_feat_TG = Variable(
                    torch.from_numpy(text_feat.astype('float32'))).cuda()
                X = Variable(torch.from_numpy(feat_data)).cuda()
                y_true = Variable(torch.from_numpy(
                    labels.astype('int'))).cuda()
                z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()

                # GAN's T loss
                T_real = netT(X)
                T_loss_real = torch.mean(similarity_func(text_feat_TG, T_real))

                # GAN's T loss
                G_sample = netG(z, text_feat_TG).detach()
                T_fake_TG = netT(G_sample)
                T_loss_fake = torch.mean(
                    similarity_func(text_feat_TG, T_fake_TG))

                # GAN's T loss
                G_sample_creative = netG(z, text_feat_Creative).detach()
                T_fake_creative_TG = netT(G_sample_creative)
                T_loss_fake_creative = torch.mean(
                    similarity_func(text_feat_Creative, T_fake_creative_TG))

                T_loss = -1 * T_loss_real - T_loss_fake - T_loss_fake_creative
                T_loss.backward()

                optimizerT.step()
                optimizerG.step()
                reset_grad(nets)
        """ Discriminator """
        for _ in range(5):
            blobs = data_layer.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)  # class labels

            text_feat = np.array([dataset.train_att[i, :] for i in labels])
            text_feat = Variable(torch.from_numpy(
                text_feat.astype('float32'))).cuda()
            X = Variable(torch.from_numpy(feat_data)).cuda()
            y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
            z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()

            # GAN's D loss
            D_real, C_real = netD(X)
            D_loss_real = torch.mean(D_real)
            C_loss_real = F.cross_entropy(C_real, y_true)
            DC_loss = -D_loss_real + C_loss_real
            DC_loss.backward()

            # GAN's D loss
            G_sample = netG(z, text_feat).detach()
            D_fake, C_fake = netD(G_sample)
            D_loss_fake = torch.mean(D_fake)
            C_loss_fake = F.cross_entropy(C_fake, y_true)

            DC_loss = D_loss_fake + C_loss_fake
            DC_loss.backward()

            # train with gradient penalty (WGAN_GP)
            grad_penalty = calc_gradient_penalty(netD, X.data, G_sample.data)
            grad_penalty.backward()

            Wasserstein_D = D_loss_real - D_loss_fake
            optimizerD.step()
            reset_grad(nets)
        """ Generator """
        for _ in range(1):
            blobs = data_layer.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)  # class labels
            text_feat = np.array([dataset.train_att[i, :] for i in labels])
            text_feat = Variable(torch.from_numpy(
                text_feat.astype('float32'))).cuda()

            X = Variable(torch.from_numpy(feat_data)).cuda()
            y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
            z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()

            G_sample = netG(z, text_feat)
            D_fake, C_fake = netD(G_sample)
            _, C_real = netD(X)

            # GAN's G loss
            G_loss = torch.mean(D_fake)
            # Auxiliary classification loss
            C_loss = (F.cross_entropy(C_real, y_true) +
                      F.cross_entropy(C_fake, y_true)) / 2

            # GAN's G loss creative
            G_sample_creative = netG(z, text_feat_Creative).detach()

            if model_num == 3 or model_num == 4:
                D_creative_fake, _ = netD(G_sample_creative)
                G_loss_fake_creative = torch.mean(D_creative_fake)
                T_fake = netT(G_sample)
                T_loss_fake = torch.mean(similarity_func(text_feat, T_fake))

                T_fake_creative = netT(G_sample_creative)
                T_loss_fake_creative = torch.mean(
                    similarity_func(text_feat_Creative, T_fake_creative))

                GC_loss = -G_loss - G_loss_fake_creative + C_loss - T_loss_fake - T_loss_fake_creative
            else:
                GC_loss = -G_loss + C_loss

            # Centroid loss
            Euclidean_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_W_LAMBDA != 0:
                for i in range(dataset.train_cls_num):
                    sample_idx = (y_true == i).data.nonzero().squeeze()
                    if sample_idx.numel() == 0:
                        Euclidean_loss += 0.0
                    else:
                        G_sample_cls = G_sample[sample_idx, :]
                        Euclidean_loss += (
                            G_sample_cls.mean(dim=0) -
                            tr_cls_centroid[i]).pow(2).sum().sqrt()
                Euclidean_loss *= 1.0 / dataset.train_cls_num * opt.CENT_LAMBDA

            # ||W||_2 regularization
            reg_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_W_LAMBDA != 0:
                for name, p in netG.named_parameters():
                    if 'weight' in name:
                        reg_loss += p.pow(2).sum()
                reg_loss.mul_(opt.REG_W_LAMBDA)

            # ||W_z||21 regularization, make W_z sparse
            reg_Wz_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_Wz_LAMBDA != 0 and not opt.is_gbu:
                Wz = netG.rdc_text.weight
                reg_Wz_loss = Wz.pow(2).sum(dim=0).sqrt().sum().mul(
                    opt.REG_Wz_LAMBDA)

            if model_num == 2 or model_num == 4:
                # D(C| GX_fake)) + Classify GX_fake as real
                D_creative_fake, C_creative_fake = netD(G_sample_creative)
                G_fake_C = F.softmax(C_creative_fake)
                # SM Divergence
                q_shape = Variable(
                    torch.FloatTensor(G_fake_C.data.size(0),
                                      G_fake_C.data.size(1))).cuda()
                q_shape.data.fill_(1.0 / G_fake_C.data.size(1))

                SM_ab = F.sigmoid(log_SM_ab(ones))
                SM_a = 0.2 + torch.div(SM_ab[0][0], 1.6666666666666667).cuda()
                SM_b = 0.2 + torch.div(SM_ab[0][1], 1.6666666666666667).cuda()
                pow_a_b = torch.div(1 - SM_a, 1 - SM_b)
                alpha_term = (torch.pow(G_fake_C + 1e-5, SM_a) *
                              torch.pow(q_shape, 1 - SM_a)).sum(1)
                entropy_GX_fake_vec = torch.div(
                    torch.pow(alpha_term, pow_a_b) - 1, SM_b - 1)

                min_e, max_e = torch.min(entropy_GX_fake_vec), torch.max(
                    entropy_GX_fake_vec)
                entropy_GX_fake_vec = (entropy_GX_fake_vec - min_e) / (max_e -
                                                                       min_e)
                entropy_GX_fake = -entropy_GX_fake_vec.mean()
                loss_creative = -creative_weight * entropy_GX_fake

                disc_GX_fake_real = -torch.mean(D_creative_fake)
                total_loss_creative = loss_creative + disc_GX_fake_real

                all_loss = GC_loss + Euclidean_loss + reg_loss + reg_Wz_loss + total_loss_creative
            else:
                all_loss = GC_loss + Euclidean_loss + reg_loss + reg_Wz_loss

            all_loss.backward()

            if model_num == 2 or model_num == 4:
                optimizer_SM_ab.step()
            optimizerG.step()
            reset_grad(nets)

        if it % opt.disp_interval == 0 and it:
            acc_real = (np.argmax(C_real.data.cpu().numpy(), axis=1)
                        == y_true.data.cpu().numpy()).sum() / float(
                            y_true.data.size()[0])
            acc_fake = (np.argmax(C_fake.data.cpu().numpy(), axis=1)
                        == y_true.data.cpu().numpy()).sum() / float(
                            y_true.data.size()[0])

            log_text = 'Iter-{}; rl: {:.4}%; fk: {:.4}%'.format(
                it, acc_real * 100, acc_fake * 100)
            with open(log_dir, 'a') as f:
                f.write(log_text + '\n')

        if it % opt.evl_interval == 0 and it > opt.disp_interval:
            cur_acc = 0
            cur_auc = 0
            cur_hm = 0

            netG.eval()
            if is_val:
                cur_acc = eval_fakefeat_test(netG, dataset.val_cls_num,
                                             dataset.val_att,
                                             dataset.val_unseen_feature,
                                             dataset.val_unseen_label, param,
                                             result)

                if opt.is_gbu:
                    cur_hm, acc_S_T, acc_U_T = eval_fakefeat_test_gzsl(
                        netG, dataset, dataset.val_cls_num, dataset.val_att,
                        dataset.val_unseen_feature, dataset.val_unseen_label,
                        param, result)

                else:
                    cur_auc = eval_fakefeat_GZSL(netG, dataset,
                                                 dataset.val_cls_num,
                                                 dataset.val_att,
                                                 dataset.val_unseen_feature,
                                                 dataset.val_unseen_label,
                                                 param, out_subdir, result)
            else:
                cur_acc = eval_fakefeat_test(netG, dataset.test_cls_num,
                                             dataset.test_att,
                                             dataset.test_unseen_feature,
                                             dataset.test_unseen_label, param,
                                             result)

                if opt.is_gbu:
                    cur_hm, acc_S_T, acc_U_T = eval_fakefeat_test_gzsl(
                        netG, dataset, dataset.test_cls_num, dataset.test_att,
                        dataset.test_unseen_feature, dataset.test_unseen_label,
                        param, result)

                else:
                    cur_auc = eval_fakefeat_GZSL(netG, dataset,
                                                 dataset.test_cls_num,
                                                 dataset.test_att,
                                                 dataset.test_unseen_feature,
                                                 dataset.test_unseen_label,
                                                 param, out_subdir, result)

            if cur_acc > result.best_acc:
                result.best_acc = cur_acc

                files2remove = glob.glob(out_subdir + '/Best_model_ACC*')
                for _i in files2remove:
                    os.remove(_i)

                save_dict = {
                    'it': it + 1,
                    'state_dict_G': netG.state_dict(),
                    'state_dict_D': netD.state_dict(),
                    'random_seed': opt.manualSeed,
                    'log': log_text,
                }

                if model_num == 3 or model_num == 4:
                    save_dict.update({'state_dict_T': netT.state_dict()})
                best_model_acc_path = '/Best_model_ACC_{:.2f}.tar'.format(
                    cur_acc)
                torch.save(save_dict, out_subdir + best_model_acc_path)

            if cur_auc > result.best_auc:
                result.best_auc = cur_auc

                files2remove = glob.glob(out_subdir + '/Best_model_AUC*')
                for _i in files2remove:
                    os.remove(_i)

                save_dict = {
                    'it': it + 1,
                    'state_dict_G': netG.state_dict(),
                    'state_dict_D': netD.state_dict(),
                    'random_seed': opt.manualSeed,
                    'log': log_text,
                }

                if model_num == 3 or model_num == 4:
                    save_dict.update({'state_dict_T': netT.state_dict()})
                best_model_auc_path = '/Best_model_AUC_{:.2f}.tar'.format(
                    cur_auc)
                torch.save(save_dict, out_subdir + best_model_auc_path)

            if cur_hm > result.best_hm:
                result.best_hm = cur_hm
                result.best_acc_S_T = acc_S_T
                result.best_acc_U_T = acc_U_T

                files2remove = glob.glob(out_subdir + '/Best_model_HM*')
                for _i in files2remove:
                    os.remove(_i)

                save_dict = {
                    'it': it + 1,
                    'state_dict_G': netG.state_dict(),
                    'state_dict_D': netD.state_dict(),
                    'random_seed': opt.manualSeed,
                    'log': log_text,
                }

                if model_num == 3 or model_num == 4:
                    save_dict.update({'state_dict_T': netT.state_dict()})
                best_model_hm_path = '/Best_model_HM_{:.2f}.tar'.format(cur_hm)
                torch.save(save_dict, out_subdir + best_model_hm_path)

            log_text_2 = 'iteration: %f, best_acc: %f, best_auc: %f, best_hm: %f' % (
                it, result.best_acc, result.best_auc, result.best_hm)
            with open(log_dir_2, 'a') as f:
                f.write(log_text_2 + '\n')
            netG.train()

    if is_val:
        if os.path.isfile(out_subdir + best_model_acc_path):
            print("=> loading checkpoint '{}'".format(best_model_acc_path))
            checkpoint = torch.load(out_subdir + best_model_acc_path)
            netG.load_state_dict(checkpoint['state_dict_G'])
            netD.load_state_dict(checkpoint['state_dict_D'])
            if model_num == 3 or model_num == 4:
                netT.load_state_dict(checkpoint['state_dict_T'])
            it = checkpoint['it']
            print("iteration: {}".format(it))

            netG.eval()
            test_acc = eval_fakefeat_test(netG, dataset.test_cls_num,
                                          dataset.test_att,
                                          dataset.test_unseen_feature,
                                          dataset.test_unseen_label, param,
                                          result)

            result.test_acc = test_acc
        else:
            print("=> no checkpoint found at '{}'".format(out_subdir +
                                                          best_model_acc_path))

        if os.path.isfile(out_subdir + best_model_auc_path):
            print("=> loading checkpoint '{}'".format(best_model_auc_path))
            checkpoint = torch.load(out_subdir + best_model_auc_path)
            netG.load_state_dict(checkpoint['state_dict_G'])
            netD.load_state_dict(checkpoint['state_dict_D'])
            if model_num == 3 or model_num == 4:
                netT.load_state_dict(checkpoint['state_dict_T'])
            it = checkpoint['it']
            print("iteration: {}".format(it))

            netG.eval()
            test_auc = eval_fakefeat_GZSL(netG, dataset, dataset.test_cls_num,
                                          dataset.test_att,
                                          dataset.test_unseen_feature,
                                          dataset.test_unseen_label, param,
                                          out_subdir, result)

            result.test_auc = test_auc
        else:
            print("=> no checkpoint found at '{}'".format(out_subdir +
                                                          best_model_auc_path))

        if os.path.isfile(out_subdir + best_model_hm_path):
            print("=> loading checkpoint '{}'".format(best_model_hm_path))
            checkpoint = torch.load(out_subdir + best_model_hm_path)
            netG.load_state_dict(checkpoint['state_dict_G'])
            netD.load_state_dict(checkpoint['state_dict_D'])
            if model_num == 3 or model_num == 4:
                netT.load_state_dict(checkpoint['state_dict_T'])
            it = checkpoint['it']
            print("iteration: {}".format(it))

            netG.eval()
            test_hm, test_acc_S_T, test_acc_U_T = eval_fakefeat_test_gzsl(
                netG, dataset, dataset.test_cls_num, dataset.test_att,
                dataset.test_unseen_feature, dataset.test_unseen_label, param,
                result)

            result.test_hm = test_hm
            result.test_acc_S_T = test_acc_S_T
            result.test_acc_U_T = test_acc_U_T
        else:
            print("=> no checkpoint found at '{}'".format(out_subdir +
                                                          best_model_hm_path))

        log_text_2 = 'test_acc: %f, test_auc: %f, test_hm: %f, test_acc_S_T: %f, test_acc_U_T: %f' % (
            result.test_acc, result.test_auc, result.test_hm,
            result.test_acc_S_T, result.test_acc_U_T)
        with open(log_dir_2, 'a') as f:
            f.write(log_text_2 + '\n')

    return result
예제 #14
0
def train():
    param = _param()
    print("load dataset origin")
    dataset_origin = LoadDataset_origin(opt)
    print("load dataset")
    dataset = LoadDataset(opt)
    param.X_dim = dataset.feature_dim

    data_layer_origin = FeatDataLayer_origin(
        dataset_origin.labels_train, dataset_origin.pfc_feat_data_train, opt)
    data_layer = FeatDataLayer_add_FG(
        dataset.labels_train, dataset.pfc_feat_data_train, opt,
        dataset.train_text_feature, dataset.familyToText, dataset.genusToText,
        dataset.familyLabelToBirdLabel, dataset.genusLabelToBirdLabel,
        dataset.labels_origin_train)
    result = Result()
    result_gzsl = Result()
    netG = _netG(dataset.text_dim, dataset.feature_dim).cuda()
    netG.apply(weights_init)
    print(netG)
    netD = _netD(dataset.train_cls_num, dataset.feature_dim).cuda()
    netD.apply(weights_init)
    print(netD)

    exp_info = 'CUB_EASY' if opt.splitmode == 'easy' else 'CUB_HARD'
    exp_params = 'Eu{}_Rls{}_RWz{}'.format(opt.CENT_LAMBDA, opt.REG_W_LAMBDA,
                                           opt.REG_Wz_LAMBDA)

    out_dir = 'out/{:s}'.format(exp_info)
    out_subdir = 'out/{:s}/{:s}'.format(exp_info, exp_params)
    opt.out_subdir = out_subdir

    if not os.path.exists('out'):
        os.mkdir('out')
    if not os.path.exists(out_dir):
        os.mkdir(out_dir)
    if not os.path.exists(out_subdir):
        os.mkdir(out_subdir)

    cprint(" The output dictionary is {}".format(out_subdir), 'red')
    log_dir = out_subdir + '/log_{:s}'.format(exp_info)

    if opt.exp_no != "":
        log_dir += "_" + opt.exp_no
    log_dir += ".txt"

    opt.log_dir = log_dir
    opt.auc_plot_dir = out_subdir + '/best_auc_plot{:s}_{:s}'.format(
        opt.exp_no, exp_info)

    opt.auc_solid_plot_dir = out_subdir + '/solid_auc_plot{:s}_{:s}'.format(
        opt.exp_no, exp_info)

    opt.history_D_loss_dir = out_subdir + '/D_loss_plot{:s}_{:s}'.format(
        opt.exp_no, exp_info)
    opt.history_G_loss_dir = out_subdir + '/G_loss_plot{:s}_{:s}'.format(
        opt.exp_no, exp_info)

    start_step = 0

    if opt.resume:
        if os.path.isfile(opt.resume):
            print("=> loading checkpoint '{}'".format(opt.resume))
            checkpoint = torch.load(opt.resume)
            netG.load_state_dict(checkpoint['state_dict_G'])
            netD.load_state_dict(checkpoint['state_dict_D'])
            start_step = checkpoint['it']
            print(checkpoint['log'])
        else:
            print("=> no checkpoint found at '{}'".format(opt.resume))

    nets = [netG, netD]

    # tr_cls_centroid = Variable(torch.from_numpy(dataset.tr_cls_centroid.astype('float32'))).cuda()
    optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(0.5, 0.9))
    optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(0.5, 0.9))
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    history_D_loss = []
    history_G_loss = []
    for it in range(start_step, 10000 + 1):
        cur_D_loss = 0
        cur_G_loss = 0
        """ Discriminator """
        for _ in range(5):
            blobs = data_layer_origin.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)  # class labels

            text_feat = np.array(
                [dataset_origin.train_text_feature[i, :] for i in labels])
            text_feat = Variable(torch.from_numpy(
                text_feat.astype('float32'))).cuda()
            X = Variable(torch.from_numpy(feat_data)).cuda()
            y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
            z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()
            y_true = y_true.to(device=device, dtype=torch.long)
            # GAN's D loss
            D_real, C_real = netD(X)
            D_loss_real = torch.mean(D_real)
            C_loss_real = F.cross_entropy(C_real, y_true)
            DC_loss = -D_loss_real + C_loss_real
            DC_loss.backward()
            cur_D_loss += DC_loss.item()

            # GAN's D loss
            G_sample = netG(z, text_feat).detach()
            D_fake, C_fake = netD(G_sample)
            D_loss_fake = torch.mean(D_fake)
            C_loss_fake = F.cross_entropy(C_fake, y_true)
            DC_loss = D_loss_fake + C_loss_fake
            DC_loss.backward()
            cur_D_loss += DC_loss.item()
            # train with gradient penalty (WGAN_GP)
            grad_penalty = calc_gradient_penalty(netD, X.data, G_sample.data)
            grad_penalty.backward()

            Wasserstein_D = D_loss_real - D_loss_fake
            optimizerD.step()
            reset_grad(nets)
            cur_D_loss += Wasserstein_D.item()
        """ Generator """
        for _ in range(1):
            blobs = data_layer.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)
            origin_labels = blobs['minibatch_origin_label'].astype(int)
            text_feat = blobs['text_feat']  # text_feat
            # text_feat = np.array([dataset.train_text_feature[i, :] for i in labels])
            text_feat = Variable(torch.from_numpy(
                text_feat.astype('float32'))).cuda()

            X = Variable(torch.from_numpy(feat_data)).cuda()
            y_true = Variable(torch.from_numpy(labels.astype('int'))).cuda()
            y_origin_true = Variable(
                torch.from_numpy(origin_labels.astype('int'))).cuda()
            y_true = y_true.to(device=device, dtype=torch.long)
            z = Variable(torch.randn(opt.batchsize, param.z_dim)).cuda()

            G_sample = netG(z, text_feat)
            D_fake, C_fake = netD(G_sample)
            _, C_real = netD(X)

            # GAN's G loss
            G_loss = torch.mean(D_fake)
            # Auxiliary classification loss
            C_loss = (F.cross_entropy(C_real, y_true) +
                      F.cross_entropy(C_fake, y_true)) / 2

            GC_loss = -G_loss + C_loss

            cur_G_loss += -G_loss.item() + F.cross_entropy(C_fake,
                                                           y_true).item()
            Bird_Euclidean_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.CENT_LAMBDA != 0 and opt.BIRD_CENT_LAMBDA != 0:
                for i in range(dataset.train_cls_num):
                    sample_idx = (y_origin_true == i).data.nonzero().squeeze()
                    if sample_idx.numel() == 0:
                        Bird_Euclidean_loss += 0.0
                    else:
                        G_sample_cls = G_sample[sample_idx, :]
                        center = Variable(
                            torch.from_numpy(dataset.tr_cls_centroid[i].astype(
                                'float32'))).cuda()
                        Bird_Euclidean_loss += (G_sample_cls.mean(dim=0) -
                                                center).pow(2).sum().sqrt()
                Bird_Euclidean_loss *= 1.0 / dataset.train_cls_num

            Family_Euclidean_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.CENT_LAMBDA != 0 and opt.FAMILY_CENT_LAMBDA != 0:
                for i in range(dataset.familyLabelStart,
                               dataset.familyLabelEnd):
                    sample_idx = (y_origin_true == i).data.nonzero().squeeze()
                    if sample_idx.numel() == 0:
                        Family_Euclidean_loss += 0.0
                    else:
                        G_sample_cls = G_sample[sample_idx, :]
                        center = Variable(
                            torch.from_numpy(dataset.tr_cls_centroid[i].astype(
                                'float32'))).cuda()
                        Family_Euclidean_loss += (G_sample_cls.mean(dim=0) -
                                                  center).pow(2).sum().sqrt()
                Family_Euclidean_loss *= 1.0 / (dataset.familyLabelEnd -
                                                dataset.familyLabelStart)

            Genus_Euclidean_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.CENT_LAMBDA != 0 and opt.GENUS_CENT_LAMBDA != 0:
                for i in range(dataset.genusLabelStart, dataset.genusLabelEnd):
                    sample_idx = (y_origin_true == i).data.nonzero().squeeze()
                    if sample_idx.numel() == 0:
                        Genus_Euclidean_loss += 0.0
                    else:
                        G_sample_cls = G_sample[sample_idx, :]
                        center = Variable(
                            torch.from_numpy(dataset.tr_cls_centroid[i].astype(
                                'float32'))).cuda()
                        Genus_Euclidean_loss += (G_sample_cls.mean(dim=0) -
                                                 center).pow(2).sum().sqrt()
                Genus_Euclidean_loss *= 1.0 / (dataset.genusLabelEnd -
                                               dataset.genusLabelStart)

            Euclidean_loss = opt.CENT_LAMBDA * (
                opt.BIRD_CENT_LAMBDA * Bird_Euclidean_loss +
                opt.FAMILY_CENT_LAMBDA * Family_Euclidean_loss +
                opt.GENUS_CENT_LAMBDA * Genus_Euclidean_loss)

            # ||W||_2 regularization
            reg_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_W_LAMBDA != 0:
                for name, p in netG.named_parameters():
                    if 'weight' in name:
                        reg_loss += p.pow(2).sum()
                reg_loss.mul_(opt.REG_W_LAMBDA)

            # ||W_z||21 regularization, make W_z sparse
            reg_Wz_loss = Variable(torch.Tensor([0.0])).cuda()
            if opt.REG_Wz_LAMBDA != 0:
                Wz = netG.rdc_text.weight
                reg_Wz_loss = Wz.pow(2).sum(dim=0).sqrt().sum().mul(
                    opt.REG_Wz_LAMBDA)

            all_loss = GC_loss + Euclidean_loss + reg_loss + reg_Wz_loss
            all_loss.backward()
            optimizerG.step()
            reset_grad(nets)

            cur_G_loss += Euclidean_loss.item()
        history_D_loss.append(cur_D_loss)
        history_G_loss.append(cur_G_loss)
        print("Iter-" + str(it + 1) + "; G-loss: " + str(cur_G_loss) +
              "; D-loss: " + str(cur_D_loss))

        if it % opt.disp_interval == 0 and it:
            acc_real = (np.argmax(C_real.data.cpu().numpy(), axis=1)
                        == y_true.data.cpu().numpy()).sum() / float(
                            y_true.data.size()[0])
            acc_fake = (np.argmax(C_fake.data.cpu().numpy(), axis=1)
                        == y_true.data.cpu().numpy()).sum() / float(
                            y_true.data.size()[0])

            log_text = 'Iter-{}; Was_D: {:.4}; Euc_ls: {:.4}; Bird_Euc_ls: {:.4}; family_Euc_ls: {:.4}; ' \
                       'Genus_Euc_ls: {:.4}; reg_ls: {:.4}; Wz_ls: {:.4}; G_loss: {:.4}; D_loss_real: {:.4};' \
                       ' D_loss_fake: {:.4}; rl: {:.4}%; fk: {:.4}%' \
                .format(it,
                        Wasserstein_D.item(),
                        Euclidean_loss.item(),
                        Bird_Euclidean_loss.item(),
                        Family_Euclidean_loss.item(),
                        Genus_Euclidean_loss.item(),
                        reg_loss.item(),
                        reg_Wz_loss.item(),
                        G_loss.item(),
                        D_loss_real.item(),
                        D_loss_fake.item(),
                        acc_real * 100, acc_fake * 100)
            print(log_text)

        if it % opt.evl_interval == 0 and it >= 100:
            netG.eval()
            eval_fakefeat_test(it, netG, dataset_origin, param, result)
            eval_fakefeat_GZSL(it, netG, dataset_origin, param, result_gzsl)
            if result.save_model:
                files2remove = glob.glob(
                    out_subdir + '/Best_model{}_Acc*'.format(opt.exp_no))
                for _i in files2remove:
                    os.remove(_i)
                torch.save(
                    {
                        'it': it + 1,
                        'state_dict_G': netG.state_dict(),
                        'state_dict_D': netD.state_dict(),
                        'random_seed': opt.manualSeed,
                        'log': log_text,
                    }, out_subdir + '/Best_model{}_Acc_{:.2f}.tar'.format(
                        opt.exp_no, result.acc_list[-1]))

            if result_gzsl.save_model:
                files2remove = glob.glob(
                    out_subdir + '/Best_model{}_Auc*'.format(opt.exp_no))
                for _i in files2remove:
                    os.remove(_i)
                torch.save(
                    {
                        'it': it + 1,
                        'state_dict_G': netG.state_dict(),
                        'state_dict_D': netD.state_dict(),
                        'random_seed': opt.manualSeed,
                        'log': log_text,
                    }, out_subdir + '/Best_model{}_Auc_{:.2f}.tar'.format(
                        opt.exp_no, result_gzsl.best_auc * 100))

            netG.train()

        if it % opt.save_interval == 0 and it:
            torch.save(
                {
                    'it': it + 1,
                    'state_dict_G': netG.state_dict(),
                    'state_dict_D': netD.state_dict(),
                    'random_seed': opt.manualSeed,
                    'log': log_text,
                }, out_subdir + '/Iter_{:d}.tar'.format(it))
            cprint('Save model to ' + out_subdir + '/Iter_{:d}.tar'.format(it),
                   'red')

    print("Reproduce CUB {}".format(opt.splitmode))
    print("Accuracy is {:.4}%, and Generalized AUC is {:.4}%".format(
        result.best_acc, result_gzsl.best_auc * 100))

    np.savetxt(opt.history_D_loss_dir + '.txt', history_D_loss, fmt='%.015f')
    np.savetxt(opt.history_G_loss_dir + '.txt', history_G_loss, fmt='%.015f')
예제 #15
0
def train(opt):
    param = _param()
    dataset = LoadDataset(opt)
    param.X_dim = dataset.feature_dim

    data_layer = FeatDataLayer(dataset.labels_train,
                               dataset.pfc_feat_data_train, opt)

    # initialize model
    netGs = []
    netDs = []
    parts = 7 if opt.dataset == "CUB2011" else 6
    for part in range(parts):
        netGs.append(_netG(dataset.text_dim, 512).cuda().apply(weights_init))
        netDs.append(
            _netD(dataset.train_cls_num, 512).cuda().apply(weights_init))

    start_step = 0

    part_cls_centrild = torch.from_numpy(
        dataset.part_cls_centrild.astype('float32')).cuda()

    # initialize optimizers
    optimizerGs = []
    optimizerDs = []
    for netG in netGs:
        optimizerGs.append(
            optim.Adam(netG.parameters(), lr=opt.lr, betas=(0.5, 0.9)))
    for netD in netDs:
        optimizerDs.append(
            optim.Adam(netD.parameters(), lr=opt.lr, betas=(0.5, 0.9)))

    for it in range(start_step, 3000 + 1):
        """ Discriminator """
        for _ in range(5):
            blobs = data_layer.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)  # class labels
            text_feat = np.array(
                [dataset.train_text_feature[i, :] for i in labels])
            text_feat = torch.from_numpy(text_feat.astype('float32')).cuda()
            X = torch.from_numpy(feat_data).cuda()
            y_true = torch.from_numpy(labels.astype('int')).cuda()

            for part in range(parts):
                z = torch.randn(opt.batchsize, param.z_dim).cuda()
                D_real, C_real = netDs[part](X[:, part * 512:(part + 1) * 512])
                D_loss_real = torch.mean(D_real)
                C_loss_real = F.cross_entropy(C_real, y_true)
                DC_loss = -D_loss_real + C_loss_real
                DC_loss.backward()

                G_sample = netGs[part](z, text_feat)
                D_fake, C_fake = netDs[part](G_sample)
                D_loss_fake = torch.mean(D_fake)
                C_loss_fake = F.cross_entropy(C_fake, y_true)
                DC_loss = D_loss_fake + C_loss_fake
                DC_loss.backward()

                grad_penalty = calc_gradient_penalty(
                    opt.batchsize, netDs[part],
                    X.data[:, part * 512:(part + 1) * 512], G_sample.data,
                    opt.GP_LAMBDA)
                grad_penalty.backward()

                Wasserstein_D = D_loss_real - D_loss_fake
                # writer.add_scalar("Wasserstein_D"+str(part), Wasserstein_D.item(), it)

                optimizerDs[part].step()
                netGs[part].zero_grad()
                netDs[part].zero_grad()
        """ Generator """
        for _ in range(1):
            blobs = data_layer.forward()
            feat_data = blobs['data']  # image data
            labels = blobs['labels'].astype(int)  # class labels
            text_feat = np.array(
                [dataset.train_text_feature[i, :] for i in labels])
            text_feat = torch.from_numpy(text_feat.astype('float32')).cuda()

            X = torch.from_numpy(feat_data).cuda()
            y_true = torch.from_numpy(labels.astype('int')).cuda()

            for part in range(parts):
                z = torch.randn(opt.batchsize, param.z_dim).cuda()
                G_sample = netGs[part](z, text_feat)
                # G_sample_all[:, part*512:(part+1)*512] = G_sample
                D_fake, C_fake = netDs[part](G_sample)
                _, C_real = netDs[part](X[:, part * 512:(part + 1) * 512])

                G_loss = torch.mean(D_fake)
                C_loss = (F.cross_entropy(C_real, y_true) +
                          F.cross_entropy(C_fake, y_true)) / 2
                GC_loss = -G_loss + C_loss
                # writer.add_scalar("GC_loss"+str(part), GC_loss.item(), it)

                Euclidean_loss = torch.tensor([0.0]).cuda()
                if opt.REG_W_LAMBDA != 0:
                    for i in range(dataset.train_cls_num):
                        sample_idx = (y_true == i).data.nonzero().squeeze()
                        if sample_idx.numel() == 0:
                            Euclidean_loss += 0.0
                        else:
                            G_sample_cls = G_sample[sample_idx, :]
                            Euclidean_loss += (G_sample_cls.mean(dim=0) -
                                               part_cls_centrild[i][part]
                                               ).pow(2).sum().sqrt()
                    Euclidean_loss *= 1.0 / dataset.train_cls_num * opt.CENT_LAMBDA

                # ||W||_2 regularization
                reg_loss = torch.Tensor([0.0]).cuda()
                if opt.REG_W_LAMBDA != 0:

                    for name, p in netGs[part].named_parameters():
                        if 'weight' in name:
                            reg_loss += p.pow(2).sum()
                    reg_loss.mul_(opt.REG_W_LAMBDA)

                # writer.add_scalar("reg_loss"+str(part), reg_loss.item(), it)

                # ||W_z||21 regularization, make W_z sparse
                reg_Wz_loss = torch.Tensor([0.0]).cuda()
                if opt.REG_Wz_LAMBDA != 0:
                    Wz = netGs[part].rdc_text.weight
                    reg_Wz_loss = reg_Wz_loss + Wz.pow(2).sum(
                        dim=0).sqrt().sum().mul(opt.REG_Wz_LAMBDA)

                # writer.add_scalar("reg_Wz_loss"+str(part), reg_Wz_loss.item(), it)

                all_loss = GC_loss + Euclidean_loss + reg_loss + reg_Wz_loss
                all_loss.backward()
                optimizerGs[part].step()

        if it % opt.evl_interval == 0 and it > 500:
            print(it)
            for part in range(parts):
                netGs[part].eval()
            train_classifier(opt, param, dataset, netGs)
            for part in range(parts):
                netGs[part].train()