def composition(): data_dir = pathlib.Path('train_val') data_anno_raw = pd.read_csv('train_val/keys.csv') data_anno = pd.DataFrame({ 'id': data_anno_raw['id'].values, 'category': [ TRAFFIC_LABELS_TO_NUM[label] for label in data_anno_raw['category'].values ] }) orig = MyDataset(data_dir, data_anno, transform=None) str_transform = "Composition" path = f'aug_pics/{str_transform}.png' data = MyDataset(data_dir, data_anno) fig, axes = plt.subplots(8, 2, figsize=(4, 16)) for row in axes: for ax in row: ax.set_axis_off() for i in range(8): tens, _ = orig.__getitem__(i) img = tensor2img(tens) tens, _ = data.__getitem__(i) img_aug = tensor2img(tens) axes[i, 0].imshow(img) axes[i, 1].imshow(img_aug) fig.suptitle(str_transform) fig.savefig(path)
def one_by_one(): data_dir = 'train_val/pic' data_anno = pd.read_csv('train_val/keys.csv') orig = MyDataset(data_dir, data_anno) for transform in tqdm(alb_transforms): str_transform = str(transform) str_transform = str_transform[:str_transform.find('(')] path = f'aug_pics/{str_transform}.png' if not pathlib.Path(path).exists(): data = MyDataset(data_dir, data_anno, transform=AlbuWrapper(transform)) fig, axes = plt.subplots(4, 2, figsize=(4, 8)) for row in axes: for ax in row: ax.set_axis_off() for i in range(4): tens, _ = orig.__getitem__(i) img = tensor2img(tens) tens, _ = data.__getitem__(i) img_aug = tensor2img(tens) axes[i, 0].imshow(img) axes[i, 1].imshow(img_aug) fig.suptitle(str_transform) fig.savefig(path)