def report_chamfer_presampled(self): evaluation_ids = self.data_splitter.get_data( tf.estimator.ModeKeys.PREDICT) point_cloud_dataset = get_point_clouds(self.preprocessed_data_path, self.cat_id, self.n_ffd_resamples) point_cloud_dataset = point_cloud_dataset.subset(evaluation_ids) mesh_dataset = MeshReader(self.preprocessed_data_path).get_dataset( self.cat_id) mesh_dataset = mesh_dataset.subset(evaluation_ids) mesh_dataset.open() deformed_predictions = [] ground_truth_point_cloud = [] mesh_ground_truth = [] ffd_dataset = get_template_ffd(self.preprocessed_data_path, self.cat_id, edge_length_threshold=None) template_ids, bs, ps = zip(*self.get_ffd_data(ffd_dataset)) with tf.Graph().as_default(): dataset = get_dataset(self.preprocessed_data_path, self.cat_id, self.view_angles, self.cloud_resamples, evaluation_ids, False, False, batch_size=len(evaluation_ids)) features, targets = dataset.make_one_shot_iterator().get_next() predictions = self.build_estimator( features, targets, tf.estimator.ModeKeys.PREDICT).predictions saver = tf.train.Saver() with tf.train.MonitoredSession() as sess: saver.restore(sess, tf.train.latest_checkpoint(self.model_dir)) data = sess.run(predictions) point_cloud_dataset.open() for evaluation_id, prediction_tensor in zip( evaluation_ids, nested_generator(data)): dp = prediction_tensor['deformed_points'] probs = prediction_tensor['probs'] i = np.argmax(probs) predicted_vertices = np.matmul(bs[i], ps[i] + dp[i]) deformed_predictions.append( sample_points(predicted_vertices, self.n_ffd_resamples)) ground_truth_point_cloud.append( point_cloud_dataset[evaluation_id]) mesh_ground_truth.append(mesh_dataset[evaluation_id]) chamfer_list, unnorm_chamfer = get_normalized_chamfer( mesh_ground_truth, ground_truth_point_cloud, deformed_predictions, self.n_ffd_resamples) print("The normalized chamfer for test set is " + str(np.mean(chamfer_list))) print("The non normalized chamfer for test set is " + str(np.mean(unnorm_chamfer)))
def get_dataset(self, mode): dataset_ids = self.data_splitter.get_data(mode) """For testing purpose dataset_ids = [ '10640377f4eb9ecdadceecd3bc8bde14', '115aa37af1a07d24a5a88312547ed863', '1a640c8dffc5d01b8fd30d65663cfd42', '2091ab9f69c77273de2426af5ed9b6a', '2eca5fa283b317c7602717bb378973f1', '383ed236166980209e23d6b6aa619041', '3a8478c9f2c1c043eb81825856d1297f', '425abc480a0b390d7cc46b39c0cc084b', '42de9b896d23244fe6fbd395d87e5106', '446e4145b475eb245751d640a4e334']""" dataset = get_dataset(self.preprocessed_data_path, self.cat_id, self.view_angles, self.cloud_resamples, dataset_ids, mode == tf.estimator.ModeKeys.TRAIN, mode == tf.estimator.ModeKeys.TRAIN, batch_size=self.batch_size) return dataset
def visualize_predicted_pointclouds(self): evaluation_ids = self.data_splitter.get_data( tf.estimator.ModeKeys.PREDICT) template_ids, bs, ps = zip(*self.get_ffd_data()) with tf.Graph().as_default(): dataset = get_dataset(self.preprocessed_data_path, self.cat_id, self.view_angles, self.cloud_resamples, evaluation_ids, False, False, batch_size=len(evaluation_ids)) features, targets = dataset.make_one_shot_iterator().get_next() predictions = self.build_estimator( features, targets, tf.estimator.ModeKeys.PREDICT).predictions saver = tf.train.Saver() with tf.train.MonitoredSession() as sess: saver.restore(sess, tf.train.latest_checkpoint(self.model_dir)) data = sess.run([features, predictions]) for prediction_tensor in nested_generator(data): image = prediction_tensor[0]['image'] image -= np.min(image) image /= np.max(image) plt.imshow(image) plt.show() dp = prediction_tensor[1]['deformed_points'] probs = prediction_tensor[1]['probs'] i = np.argmax(probs) predicted_vertices = np.matmul(bs[i], ps[i] + dp[i]) visualize_point_cloud(np.matmul(bs[i], ps[i]), color=(0, 0, 1), scale_factor=0.01) mlab.show() visualize_point_cloud(predicted_vertices, color=(1, 0, 0), scale_factor=0.01) mlab.show()