use_metric_cuhk03 = False cuhk03_classic_split = False ######################################################## if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") sys.stdout = Logger(osp.join(PATH, 'log_train.txt')) print("Dataset is being initialized") dataset = dataset_manager.init_img_dataset( root='data', name=dataset_name, split_id=split_id, cuhk03_labeled=cuhk03_labeled, cuhk03_classic_split=cuhk03_classic_split, ) tfms_train = tfms.Compose([ tfms.Random2DTranslation(height, width), tfms.RandomHorizontalFlip(), tfms.ToTensor(), tfms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) tfms_test = tfms.Compose([ tfms.Resize(size=(height, width)), tfms.ToTensor(), tfms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
print_freq = 10 eval_step = 20 start_eval = 0 PATH = 'log' use_metric_cuhk03 = False ######################################################## if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.cuda("cpu") sys.stdout = Logger(osp.join(PATH, 'log_train.txt')) print("Dataset is being initialized") dataset = dataset_manager.init_img_dataset(root='data', name=dataset_name, split_id=0) tfms_train = tfms.Compose([ tfms.Random2DTranslation(256, 128), tfms.RandomHorizontalFlip(), tfms.ToTensor(), tfms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) tfms_test = tfms.Compose([ tfms.Resize((256, 128)), tfms.ToTensor(), tfms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])