def abalone(verbose=False, show_plots=False): X_train, X_test, y_train, y_test = data_proc.process_abalone() run_experiment('abalone', X_train, X_test, y_train, y_test, verbose=verbose, show_plots=show_plots)
def abalone(kernels, verbose=False, show_plots=False): X_train, X_test, y_train, y_test = data_proc.process_abalone() for col in X_train.columns: X_train[col] = data_proc.scale_data(X_train[col]) X_test[col] = data_proc.scale_data(X_test[col]) for kernel in kernels: run_experiment(kernel, 'abalone', X_train, X_test, y_train, y_test, verbose=verbose, show_plots=show_plots)
def abalone(verbose=False): X, y = data_proc.process_abalone(scaler='minmax') run_k_means('abalone', X, y, verbose=verbose) run_expect_max('abalone', X, y, verbose=verbose)
def abalone_cluster(verbose=False, show_plots=False): X, y = data_proc.process_abalone(scaler='minmax', tt_split=False) # calculate baseline performance base_X_train, base_X_test, base_y_train, base_y_test = data_proc.process_abalone( tt_split=True) run_experiment( 'abalone', 'baseline', base_X_train, base_X_test, base_y_train, base_y_test, verbose=verbose, show_plots=show_plots, ) if verbose: print("\nBaseline complete!\n", "------------------------------\n") # calculate K-means performance k_means_X_clusters = clustering.run_k_means('abalone', X, y, dim_reduction=None, verbose=verbose) k_means_X_train, k_means_X_test, k_means_y_train, k_means_y_test = data_proc.process_abalone_w_clusters( k_means_X_clusters, scaler='minmax') run_experiment( 'abalone', 'kmeans', k_means_X_train, k_means_X_test, k_means_y_train, k_means_y_test, verbose=verbose, show_plots=show_plots, ) if verbose: print("\nK-means complete!\n", "------------------------------\n") # calculate Expectation Maximization performance em_X_clusters = clustering.run_expect_max('abalone', X, y, dim_reduction=None, verbose=verbose) em_X_train, em_X_test, em_y_train, em_y_test = data_proc.process_abalone_w_clusters( em_X_clusters, scaler='minmax') run_experiment( 'abalone', 'em', em_X_train, em_X_test, em_y_train, em_y_test, verbose=verbose, show_plots=show_plots, ) if verbose: print("\nExpectation Maximization complete!\n", "------------------------------\n")
def abalone_dr(verbose=False, show_plots=False): X, y = data_proc.process_abalone(scaler='minmax', tt_split=False) # calculate baseline performance base_X_train, base_X_test, base_y_train, base_y_test = data_proc.process_abalone( tt_split=True) run_experiment( 'abalone', 'baseline', base_X_train, base_X_test, base_y_train, base_y_test, verbose=verbose, show_plots=show_plots, ) if verbose: print("\nBaseline complete!\n", "------------------------------\n") # calculate PCA performance pca_X = dim_reduction.run_pca('abalone', X, y, verbose=verbose) pca_X_train, pca_X_test, pca_y_train, pca_y_test = train_test_split( pca_X, y) run_experiment( 'abalone', 'pca', pca_X_train, pca_X_test, pca_y_train, pca_y_test, verbose=verbose, show_plots=show_plots, ) if verbose: print("\nPCA complete!\n", "------------------------------\n") # calculate ICA performance ica_X = dim_reduction.run_ica('abalone', X, y, verbose=verbose) ica_X_train, ica_X_test, ica_y_train, ica_y_test = train_test_split( ica_X, y) run_experiment( 'abalone', 'ica', ica_X_train, ica_X_test, ica_y_train, ica_y_test, verbose=verbose, show_plots=show_plots, ) if verbose: print("\nICA complete!\n", "------------------------------\n") # calculate RP performance rp_X = dim_reduction.run_rp('abalone', X, y, verbose=verbose) rp_X_train, rp_X_test, rp_y_train, rp_y_test = train_test_split(rp_X, y) run_experiment( 'abalone', 'rp', rp_X_train, rp_X_test, rp_y_train, rp_y_test, verbose=verbose, show_plots=show_plots, ) if verbose: print("\nRP complete!\n", "------------------------------\n") # calculate DT_FI performance dt_fi_X = dim_reduction.run_dt_fi('abalone', X, y, verbose=verbose) dt_fi_X_train, dt_fi_X_test, dt_fi_y_train, dt_fi_y_test = train_test_split( dt_fi_X, y) run_experiment( 'abalone', 'dt_fi', dt_fi_X_train, dt_fi_X_test, dt_fi_y_train, dt_fi_y_test, verbose=verbose, show_plots=show_plots, ) if verbose: print("\nDT_FI complete!\n", "------------------------------\n")
def abalone(verbose=False): X, y = data_proc.process_abalone(scaler='minmax', tt_split=False) run_pca('abalone', X, y, verbose=verbose) run_ica('abalone', X, y, verbose=verbose) run_rp('abalone', X, y, verbose=verbose) run_dt_fi('abalone', X, y, verbose=verbose)