def data_load(signal_size, filename, label, InputType, task): ''' This function is mainly used to generate test data and training data. filename:Data location ''' if label == 0: fl = (loadmat(filename)["bearing"][0][0][1]) # Take out the data else: fl = (loadmat(filename)["bearing"][0][0][2]) # Take out the data fl = (fl - fl.min()) / (fl.max() - fl.min()) fl = fl.reshape(-1, ) data = [] start, end = 0, signal_size while end <= fl[:signal_size * 1000].shape[0]: if InputType == "TD": x = fl[start:end] elif InputType == "FD": x = fl[start:end] x = FFT(x) else: print("The InputType is wrong!!") data.append(x) start += signal_size end += signal_size graphset = RadiusGraph(10, data, label, task) return graphset
def data_load(signal_size, filename, label, InputType, task): ''' This function is mainly used to generate test data and training data. filename:Data location axisname:Select which channel's data,---->"_DE_time","_FE_time","_BA_time" ''' fl = pd.read_csv(filename, skiprows=range(14), header=None) fl = (fl - fl.min()) / (fl.max() - fl.min()) fl = fl.values fl = fl.reshape(-1, ) data = [] start, end = 0, signal_size while end <= fl[:signal_size * 1000].shape[0]: if InputType == "TD": x = fl[start:end] elif InputType == "FD": x = fl[start:end] x = FFT(x) else: print("The InputType is wrong!!") data.append(x) start += signal_size end += signal_size graphset = KNNGraph(10, data, label, task) return graphset
def data_load(signal_size, root, label, InputType, task): ''' This function is mainly used to generate test data and training data. root:Data location ''' fl = pd.read_csv( root, sep='\t', usecols=[1], header=None, ) fl = fl.values fl = (fl - fl.min()) / (fl.max() - fl.min()) fl = fl.reshape(-1, ) data = [] start, end = 0, signal_size while end <= fl[:signal_size * 1000].shape[0]: if InputType == "TD": x = fl[start:end] elif InputType == "FD": x = fl[start:end] x = FFT(x) else: print("The InputType is wrong!!") data.append(x) start += signal_size end += signal_size graphset = PathGraph(10, data, label, task) return graphset
def data_load(signal_size, filename, axisname, label, InputType, task): ''' This function is mainly used to generate test data and training data. filename:Data location axisname:Select which channel's data,---->"_DE_time","_FE_time","_BA_time" ''' datanumber = axisname.split(".") if eval(datanumber[0]) < 100: realaxis = "X0" + datanumber[0] + axis[0] else: realaxis = "X" + datanumber[0] + axis[0] fl = loadmat(filename)[realaxis] fl = (fl - fl.min()) / (fl.max() - fl.min()) fl = fl.reshape(-1, ) data = [] start, end = 0, signal_size while end <= fl[:signal_size * 1000].shape[0]: if InputType == "TD": x = fl[start:end] elif InputType == "FD": x = fl[start:end] x = FFT(x) else: print("The InputType is wrong!!") data.append(x) start += signal_size end += signal_size graphset = PathGraph(10, data, label, task) return graphset
def data_load(signal_size, filename, dataname, label, InputType, task): ''' This function is mainly used to generate test data and training data. filename:Data location ''' f = open(filename, "r", encoding='gb18030', errors='ignore') fl = [] if dataname == "ball_20_0.csv": for line in islice(f, 16, None): #Skip the first 16 lines line = line.rstrip() word = line.split(",", 8) #Separated by commas fl.append(eval(word[1]) ) # Take a vibration signal in the x direction as input else: for line in islice(f, 16, None): #Skip the first 16 lines line = line.rstrip() word = line.split("\t", 8) #Separated by \t fl.append(eval(word[1]) ) # Take a vibration signal in the x direction as input fl = np.array(fl) fl = (fl - fl.min()) / (fl.max() - fl.min()) fl = fl.reshape(-1, ) data = [] start, end = 0, signal_size while end <= fl[:signal_size * 1000].shape[0]: if InputType == "TD": x = fl[start:end] elif InputType == "FD": x = fl[start:end] x = FFT(x) else: print("The InputType is wrong!!") data.append(x) start += signal_size end += signal_size graphset = RadiusGraph(10, data, label, task) return graphset