from __future__ import print_function import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) sys.path.insert(0,parentdir) from utils.args import args import setup.categories.ae_setup as AESetup from models.autoencoders import * from datasets.NIH_Chest import NIHChestBinaryTrainSplit if __name__ == "__main__": dataset = NIHChestBinaryTrainSplit(root_path=os.path.join(args.root_path, "NIHCC"), binary=True, expand_channels=False, downsample=64) model = Generic_VAE(dims=(1, 64, 64), max_channels=512, depth=12, n_hidden=512) #model = ALILikeVAE(dims=(1, 64, 64)) AESetup.train_variational_autoencoder(args, model=model, dataset=dataset.get_D1_train(), BCE_Loss=False)
sys.path.insert(0, parentdir) import models as Models import global_vars as Global from utils.args import args import categories.classifier_setup as CLSetup from models.classifiers import NIHDenseBinary, NIHChestVGG from datasets.NIH_Chest import NIHChestBinaryTrainSplit if __name__ == "__main__": dataset = NIHChestBinaryTrainSplit(root_path=os.path.join( args.root_path, "NIHCC"), binary=True) model = NIHChestVGG() CLSetup.train_classifier(args, model=model, dataset=dataset.get_D1_train()) # task_list = [ # # The list of models, The function that does the training, Can I skip-test?, suffix of the operation. # # The procedures that can be skip-test are the ones that we can determine # # whether we have done them before without instantiating the network architecture or dataset. # # saves quite a lot of time when possible. # (Global.dataset_reference_classifiers, CLSetup.train_classifier, True, ['base0']), # (Global.dataset_reference_classifiers, KLogisticSetup.train_classifier, True, ['KLogistic']), # (Global.dataset_reference_classifiers, DeepEnsembleSetup.train_classifier, True, ['DE.%d'%i for i in range(5)]), # (Global.dataset_reference_autoencoders, AESetup.train_BCE_AE, False, []), # (Global.dataset_reference_autoencoders, AESetup.train_MSE_AE, False, []), # (Global.dataset_reference_vaes, AESetup.train_variational_autoencoder, False, []), # (Global.dataset_reference_pcnns, PCNNSetup.train_pixelcnn, False, []), # ] #
from __future__ import print_function import os, sys, inspect currentdir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) sys.path.insert(0, parentdir) from utils.args import args import setup.categories.ae_setup as AESetup from models.autoencoders import Generic_VAE, Generic_AE, Residual_AE from datasets.NIH_Chest import NIHChestBinaryTrainSplit if __name__ == "__main__": dataset = NIHChestBinaryTrainSplit(root_path=os.path.join( args.root_path, "NIHCC"), binary=True, expand_channels=False, downsample=64) model = Residual_AE(dims=(1, 64, 64)) AESetup.train_autoencoder(args, model=model, dataset=dataset.get_D1_train(), BCE_Loss=False)
if not args.load or not os.path.exists( os.path.join( args.experiment_path, "all_embs_UC3_ppd_%d_d1_%s.npy" % (args.points_per_d2, args.dataset))): assert args.dataset in ['NIHCC', 'PADChest'] if args.dataset.lower() == 'nihcc': D164 = NIHChestBinaryTrainSplit(root_path=os.path.join( args.root_path, 'NIHCC'), downsample=64) elif args.dataset.lower() == "padchest": D164 = PADChestBinaryTrainSplit(root_path=os.path.join( args.root_path, "PADChest"), binary=True, downsample=64) D1 = D164.get_D1_train() emb = args.embedding_function.lower() assert emb in ["vae", "ae", "ali"] dummy_args = EasyDict() dummy_args.exp = "foo" dummy_args.experiment_path = args.experiment_path if args.encoder_loss.lower() == "bce": tag = "BCE" else: tag = "MSE" if emb == "vae": model = Global.dataset_reference_vaes[args.dataset][0]() home_path = Models.get_ref_model_path(dummy_args, model.__class__.__name__, D164.name,