def train(log_dir, args, hparams): save_dir = os.path.join(log_dir, 'taco_pretrained/') checkpoint_path = os.path.join(save_dir, 'tacotron_model.ckpt') input_path = os.path.join(args.base_dir, args.tacotron_input) plot_dir = os.path.join(log_dir, 'plots') wav_dir = os.path.join(log_dir, 'wavs') mel_dir = os.path.join(log_dir, 'mel-spectrograms') eval_dir = os.path.join(log_dir, 'eval-dir') eval_plot_dir = os.path.join(eval_dir, 'plots') eval_wav_dir = os.path.join(eval_dir, 'wavs') os.makedirs(eval_dir, exist_ok=True) os.makedirs(plot_dir, exist_ok=True) os.makedirs(wav_dir, exist_ok=True) os.makedirs(mel_dir, exist_ok=True) os.makedirs(eval_plot_dir, exist_ok=True) os.makedirs(eval_wav_dir, exist_ok=True) if hparams.predict_linear: linear_dir = os.path.join(log_dir, 'linear-spectrograms') os.makedirs(linear_dir, exist_ok=True) log('Checkpoint path: {}'.format(checkpoint_path)) log('Loading training data from: {}'.format(input_path)) log('Using model: {}'.format(args.model)) log(hparams_debug_string()) #Start by setting a seed for repeatability tf.set_random_seed(hparams.tacotron_random_seed) #Set up data feeder coord = tf.train.Coordinator() with tf.variable_scope('datafeeder') as scope: feeder = Feeder(coord, input_path, hparams) #Set up model: global_step = tf.Variable(0, name='global_step', trainable=False) model, stats = model_train_mode(args, feeder, hparams, global_step) eval_model = model_test_mode(args, feeder, hparams, global_step) #Book keeping step = 0 time_window = ValueWindow(100) loss_window = ValueWindow(100) saver = tf.train.Saver(max_to_keep=5) log('Tacotron training set to a maximum of {} steps'.format(args.tacotron_train_steps)) #Memory allocation on the GPU as needed config = tf.ConfigProto() config.gpu_options.allow_growth = True #Train with tf.Session(config=config) as sess: try: summary_writer = tf.summary.FileWriter(log_dir, sess.graph) sess.run(tf.global_variables_initializer()) #saved model restoring if args.restore: #Restore saved model if the user requested it, Default = True. try: checkpoint_state = tf.train.get_checkpoint_state(save_dir) except tf.errors.OutOfRangeError as e: log('Cannot restore checkpoint: {}'.format(e)) if (checkpoint_state and checkpoint_state.model_checkpoint_path): log('Loading checkpoint {}'.format(checkpoint_state.model_checkpoint_path)) saver.restore(sess, checkpoint_state.model_checkpoint_path) else: if not args.restore: log('Starting new training!') else: log('No model to load at {}'.format(save_dir)) #initializing feeder feeder.start_threads(sess) #Training loop while not coord.should_stop() and step < args.tacotron_train_steps: start_time = time.time() step, loss, opt = sess.run([global_step, model.loss, model.optimize]) time_window.append(time.time() - start_time) loss_window.append(loss) message = 'Step {:7d} [{:.3f} sec/step, loss={:.5f}, avg_loss={:.5f}]'.format( step, time_window.average, loss, loss_window.average) log(message, end='\r') if np.isnan(loss): log('Loss exploded to {:.5f} at step {}'.format(loss, step)) raise Exception('Loss exploded') if step % args.summary_interval == 0: log('\nWriting summary at step {}'.format(step)) summary_writer.add_summary(sess.run(stats), step) if step % args.eval_interval == 0: #Run eval and save eval stats log('\nRunning evaluation at step {}'.format(step)) eval_losses = [] before_losses = [] after_losses = [] stop_token_losses = [] linear_losses = [] linear_loss = None if hparams.predict_linear: for i in tqdm(range(feeder.test_steps)): eloss, before_loss, after_loss, stop_token_loss, linear_loss, mel_p, mel_t, t_len, align, lin_p = sess.run( [eval_model.loss, eval_model.before_loss, eval_model.after_loss, eval_model.stop_token_loss, eval_model.linear_loss, eval_model.mel_outputs[0], eval_model.mel_targets[0], eval_model.targets_lengths[0], eval_model.alignments[0], eval_model.linear_outputs[0]]) eval_losses.append(eloss) before_losses.append(before_loss) after_losses.append(after_loss) stop_token_losses.append(stop_token_loss) linear_losses.append(linear_loss) linear_loss = sum(linear_losses) / len(linear_losses) wav = audio.inv_linear_spectrogram(lin_p.T, hparams) audio.save_wav(wav, os.path.join(eval_wav_dir, 'step-{}-eval-waveform-linear.wav'.format(step)), sr=hparams.sample_rate) else: for i in tqdm(range(feeder.test_steps)): eloss, before_loss, after_loss, stop_token_loss, mel_p, mel_t, t_len, align = sess.run( [eval_model.loss, eval_model.before_loss, eval_model.after_loss, eval_model.stop_token_loss, eval_model.mel_outputs[0], eval_model.mel_targets[0], eval_model.targets_lengths[0], eval_model.alignments[0]]) eval_losses.append(eloss) before_losses.append(before_loss) after_losses.append(after_loss) stop_token_losses.append(stop_token_loss) eval_loss = sum(eval_losses) / len(eval_losses) before_loss = sum(before_losses) / len(before_losses) after_loss = sum(after_losses) / len(after_losses) stop_token_loss = sum(stop_token_losses) / len(stop_token_losses) log('Saving eval log to {}..'.format(eval_dir)) #Save some log to monitor model improvement on same unseen sequence wav = audio.inv_mel_spectrogram(mel_p.T, hparams) audio.save_wav(wav, os.path.join(eval_wav_dir, 'step-{}-eval-waveform-mel.wav'.format(step)), sr=hparams.sample_rate) plot.plot_alignment(align, os.path.join(eval_plot_dir, 'step-{}-eval-align.png'.format(step)), info='{}, {}, step={}, loss={:.5f}'.format(args.model, time_string(), step, eloss), max_len=t_len // hparams.outputs_per_step) plot.plot_spectrogram(mel_p, os.path.join(eval_plot_dir, 'step-{}-eval-mel-spectrogram.png'.format(step)), info='{}, {}, step={}, loss={:.5}'.format(args.model, time_string(), step, eloss), target_spectrogram=mel_t, max_len=t_len) log('Eval loss for global step {}: {:.3f}'.format(step, eval_loss)) log('Writing eval summary!') add_eval_stats(summary_writer, step, linear_loss, before_loss, after_loss, stop_token_loss, eval_loss) if step % args.checkpoint_interval == 0: #Save model and current global step saver.save(sess, checkpoint_path, global_step=global_step) log('\nSaving alignment, Mel-Spectrograms and griffin-lim inverted waveform..') if hparams.predict_linear: input_seq, mel_prediction, linear_prediction, alignment, target, target_length = sess.run([ model.inputs[0], model.mel_outputs[0], model.linear_outputs[0], model.alignments[0], model.mel_targets[0], model.targets_lengths[0], ]) #save predicted linear spectrogram to disk (debug) linear_filename = 'linear-prediction-step-{}.npy'.format(step) np.save(os.path.join(linear_dir, linear_filename), linear_prediction.T, allow_pickle=False) #save griffin lim inverted wav for debug (linear -> wav) wav = audio.inv_linear_spectrogram(linear_prediction.T, hparams) audio.save_wav(wav, os.path.join(wav_dir, 'step-{}-wave-from-linear.wav'.format(step)), sr=hparams.sample_rate) else: input_seq, mel_prediction, alignment, target, target_length = sess.run([model.inputs[0], model.mel_outputs[0], model.alignments[0], model.mel_targets[0], model.targets_lengths[0], ]) #save predicted mel spectrogram to disk (debug) mel_filename = 'mel-prediction-step-{}.npy'.format(step) np.save(os.path.join(mel_dir, mel_filename), mel_prediction.T, allow_pickle=False) #save griffin lim inverted wav for debug (mel -> wav) wav = audio.inv_mel_spectrogram(mel_prediction.T, hparams) audio.save_wav(wav, os.path.join(wav_dir, 'step-{}-wave-from-mel.wav'.format(step)), sr=hparams.sample_rate) #save alignment plot to disk (control purposes) plot.plot_alignment(alignment, os.path.join(plot_dir, 'step-{}-align.png'.format(step)), info='{}, {}, step={}, loss={:.5f}'.format(args.model, time_string(), step, loss), max_len=target_length // hparams.outputs_per_step) #save real and predicted mel-spectrogram plot to disk (control purposes) plot.plot_spectrogram(mel_prediction, os.path.join(plot_dir, 'step-{}-mel-spectrogram.png'.format(step)), info='{}, {}, step={}, loss={:.5}'.format(args.model, time_string(), step, loss), target_spectrogram=target, max_len=target_length) log('Input at step {}: {}'.format(step, sequence_to_text(input_seq))) log('Tacotron training complete after {} global steps!'.format(args.tacotron_train_steps)) return save_dir except Exception as e: log('Exiting due to exception: {}'.format(e)) traceback.print_exc() coord.request_stop(e)
def synthesize(self, text, index, out_dir, log_dir, mel_filename): hparams = self._hparams cleaner_names = [x.strip() for x in hparams.cleaners.split(',')] seq = text_to_sequence(text, cleaner_names) feed_dict = { self.model.inputs: [np.asarray(seq, dtype=np.int32)], self.model.input_lengths: np.asarray([len(seq)], dtype=np.int32), } if self.gta: feed_dict[self.model.mel_targets] = np.load(mel_filename).reshape(1, -1, 80) if self.gta or not hparams.predict_linear: mels, alignment = self.session.run([self.mel_outputs, self.alignment], feed_dict=feed_dict) else: linear, mels, alignment = self.session.run([self.linear_outputs, self.mel_outputs, self.alignment], feed_dict=feed_dict) linear = linear.reshape(-1, hparams.num_freq) mels = mels.reshape(-1, hparams.num_mels) #Thanks to @imdatsolak for pointing this out if index is None: #Generate wav and read it wav = audio.inv_mel_spectrogram(mels.T, hparams) audio.save_wav(wav, 'temp.wav', sr=hparams.sample_rate) #Find a better way chunk = 512 f = wave.open('temp.wav', 'rb') p = pyaudio.PyAudio() stream = p.open(format=p.get_format_from_width(f.getsampwidth()), channels=f.getnchannels(), rate=f.getframerate(), output=True) data = f.readframes(chunk) while data: stream.write(data) data=f.readframes(chunk) stream.stop_stream() stream.close() p.terminate() return # Write the spectrogram to disk # Note: outputs mel-spectrogram files and target ones have same names, just different folders mel_filename = os.path.join(out_dir, 'speech-mel-{:05d}.npy'.format(index)) np.save(mel_filename, mels, allow_pickle=False) if log_dir is not None: #save wav (mel -> wav) wav = audio.inv_mel_spectrogram(mels.T, hparams) audio.save_wav(wav, os.path.join(log_dir, 'wavs/speech-wav-{:05d}-mel.wav'.format(index)), sr=hparams.sample_rate) if hparams.predict_linear: #save wav (linear -> wav) wav = audio.inv_linear_spectrogram(linear.T, hparams) audio.save_wav(wav, os.path.join(log_dir, 'wavs/speech-wav-{:05d}-linear.wav'.format(index)), sr=hparams.sample_rate) #save alignments plot.plot_alignment(alignment, os.path.join(log_dir, 'plots/speech-alignment-{:05d}.png'.format(index)), info='{}'.format(text), split_title=True) #save mel spectrogram plot plot.plot_spectrogram(mels, os.path.join(log_dir, 'plots/speech-mel-{:05d}.png'.format(index)), info='{}'.format(text), split_title=True) return mel_filename
def synthesize(self, texts, basenames, out_dir, log_dir, mel_filenames): hparams = self._hparams # [-max, max] or [0,max] t2_output_range = (-hparams.max_abs_value, hparams.max_abs_value) if hparams.symmetric_mels else ( 0, hparams.max_abs_value) # Repeat last sample until number of samples is dividable by the number of GPUs (last run scenario) while len(texts) % hparams.synthesis_batch_size != 0: texts.append(texts[-1]) basenames.append(basenames[-1]) if mel_filenames is not None: mel_filenames.append(mel_filenames[-1]) seqs = [np.asarray(text_to_sequence(text)) for text in texts] input_lengths = [len(seq) for seq in seqs] input_seqs, max_seq_len = self._prepare_inputs(seqs) feed_dict = { self.inputs: input_seqs, self.input_lengths: np.asarray(input_lengths, dtype=np.int32), } if self.gta: np_targets = [np.load(mel_filename) for mel_filename in mel_filenames] target_lengths = [len(np_target) for np_target in np_targets] target_seqs, max_target_len = self._prepare_targets(np_targets, self._hparams.outputs_per_step) feed_dict[self.targets] = target_seqs assert len(np_targets) == len(texts) linears = None if self.gta or not hparams.predict_linear: mels, alignments, stop_tokens = self.session.run( [self.mel_outputs, self.alignments, self.stop_token_prediction], feed_dict=feed_dict) # Natural batch synthesis # Get Mel lengths for the entire batch from stop_tokens predictions target_lengths = self._get_output_lengths(stop_tokens) # Take off the batch wise padding mels = [mel[:target_length, :] for mel, target_length in zip(mels, target_lengths)] assert len(mels) == len(texts) else: linears, mels, alignments, stop_tokens = self.session.run( [self.linear_outputs, self.mel_outputs, self.alignments, self.stop_token_prediction], feed_dict=feed_dict) # Natural batch synthesis # Get Mel/Linear lengths for the entire batch from stop_tokens predictions target_lengths = self._get_output_lengths(stop_tokens) # Take off the batch wise padding mels = [mel[:target_length, :] for mel, target_length in zip(mels, target_lengths)] linears = [linear[:target_length, :] for linear, target_length in zip(linears, target_lengths)] linears = np.clip(linears, t2_output_range[0], t2_output_range[1]) assert len(mels) == len(linears) == len(texts) mels = np.clip(mels, t2_output_range[0], t2_output_range[1]) if basenames is None: # Generate wav and read it wav = audio.inv_mel_spectrogram(mels[0].T, hparams) audio.save_wav(wav, 'temp.wav', sr=hparams.sample_rate) # Find a better way if platform.system() == 'Linux': # Linux wav reader os.system('aplay temp.wav') elif platform.system() == 'Windows': # windows wav reader os.system('start /min mplay32 /play /close temp.wav') else: raise RuntimeError( 'Your OS type is not supported yet, please add it to "synthesizer.py, line-165" and feel free to make a Pull Request ;) Thanks!') return saved_mels_paths = [] for i, mel in enumerate(mels): # Write the spectrogram to disk # Note: outputs mel-spectrogram files and target ones have same names, just different folders mel_filename = os.path.join(out_dir, 'mel-{}.npy'.format(basenames[i])) np.save(mel_filename, mel, allow_pickle=False) saved_mels_paths.append(mel_filename) if log_dir is not None: # save wav (mel -> wav) wav = audio.inv_mel_spectrogram(mel.T, hparams) audio.save_wav(wav, os.path.join(log_dir, 'wavs/wav-{}-mel.wav'.format(basenames[i])), sr=hparams.sample_rate) # save alignments plot.plot_alignment(alignments[i], os.path.join(log_dir, 'plots/alignment-{}.png'.format(basenames[i])), title='{}'.format(texts[i]), split_title=True, max_len=target_lengths[i]) # save mel spectrogram plot plot.plot_spectrogram(mel, os.path.join(log_dir, 'plots/mel-{}.png'.format(basenames[i])), title='{}'.format(texts[i]), split_title=True) if linears: # save wav (linear -> wav) wav = audio.inv_linear_spectrogram(linears[i].T, hparams) audio.save_wav(wav, os.path.join(log_dir, 'wavs/wav-{}-linear.wav'.format(basenames[i])), sr=hparams.sample_rate) # save linear spectrogram plot plot.plot_spectrogram(linears[i], os.path.join(log_dir, 'plots/linear-{}.png'.format(basenames[i])), title='{}'.format(texts[i]), split_title=True, auto_aspect=True) return saved_mels_paths
def synthesize(self, texts, speaker_labels, language_labels, basenames, out_dir, log_dir, mel_filenames): hparams = self._hparams cleaner_names = [x.strip() for x in hparams.cleaners.split(',')] #Repeat last sample until number of samples is dividable by the number of GPUs (last run scenario) while len(texts) % hparams.tacotron_synthesis_batch_size != 0: texts.append(texts[-1]) basenames.append(basenames[-1]) if mel_filenames is not None: mel_filenames.append(mel_filenames[-1]) assert 0 == len(texts) % self._hparams.tacotron_num_gpus seqs = [ np.asarray(text_to_sequence(text, cleaner_names)) for text in texts ] input_lengths = [len(seq) for seq in seqs] size_per_device = len(seqs) // self._hparams.tacotron_num_gpus #Pad inputs according to each GPU max length input_seqs = None input_speaker_labels = None input_language_labels = None split_infos = [] for i in range(self._hparams.tacotron_num_gpus): device_input = seqs[size_per_device * i:size_per_device * (i + 1)] device_input, max_seq_len = self._prepare_inputs(device_input) input_seqs = np.concatenate( (input_seqs, device_input), axis=1) if input_seqs is not None else device_input device_speaker_label = speaker_labels[size_per_device * i:size_per_device * (i + 1)] input_speaker_labels = np.concatenate( (input_speaker_labels, device_speaker_label), axis=0 ) if input_speaker_labels is not None else device_speaker_label device_language_label = language_labels[size_per_device * i:size_per_device * (i + 1)] input_language_labels = np.concatenate( (input_language_labels, device_language_label), axis=0 ) if input_language_labels is not None else device_language_label split_infos.append([max_seq_len, 0, 0, 0]) feed_dict = { self.inputs: input_seqs, self.speaker_labels: input_speaker_labels, self.language_labels: input_language_labels, self.input_lengths: np.asarray(input_lengths, dtype=np.int32), } if self.gta: np_targets = [ np.load(mel_filename) for mel_filename in mel_filenames ] target_lengths = [len(np_target) for np_target in np_targets] #pad targets according to each GPU max length target_seqs = None for i in range(self._hparams.tacotron_num_gpus): device_target = np_targets[size_per_device * i:size_per_device * (i + 1)] device_target, max_target_len = self._prepare_targets( device_target, self._hparams.outputs_per_step) target_seqs = np.concatenate( (target_seqs, device_target), axis=1) if target_seqs is not None else device_target split_infos[i][ 1] = max_target_len #Not really used but setting it in case for future development maybe? feed_dict[self.targets] = target_seqs assert len(np_targets) == len(texts) feed_dict[self.split_infos] = np.asarray(split_infos, dtype=np.int32) if self.gta or not hparams.predict_linear: mels, alignments, stop_tokens = self.session.run( [ self.mel_outputs, self.alignments, self.stop_token_prediction ], feed_dict=feed_dict) #Linearize outputs (1D arrays) mels = [mel for gpu_mels in mels for mel in gpu_mels] alignments = [ align for gpu_aligns in alignments for align in gpu_aligns ] stop_tokens = [ token for gpu_token in stop_tokens for token in gpu_token ] if not self.gta: #Natural batch synthesis #Get Mel lengths for the entire batch from stop_tokens predictions target_lengths = self._get_output_lengths(stop_tokens) #Take off the batch wise padding mels = [ mel[:target_length, :] for mel, target_length in zip(mels, target_lengths) ] assert len(mels) == len(texts) else: linears, mels, alignments, stop_tokens = self.session.run( [ self.linear_outputs, self.mel_outputs, self.alignments, self.stop_token_prediction ], feed_dict=feed_dict) #Linearize outputs (1D arrays) linears = [ linear for gpu_linear in linears for linear in gpu_linear ] mels = [mel for gpu_mels in mels for mel in gpu_mels] alignments = [ align for gpu_aligns in alignments for align in gpu_aligns ] stop_tokens = [ token for gpu_token in stop_tokens for token in gpu_token ] #Natural batch synthesis #Get Mel/Linear lengths for the entire batch from stop_tokens predictions # target_lengths = self._get_output_lengths(stop_tokens) target_lengths = [9999] #Take off the batch wise padding mels = [ mel[:target_length, :] for mel, target_length in zip(mels, target_lengths) ] linears = [ linear[:target_length, :] for linear, target_length in zip(linears, target_lengths) ] assert len(mels) == len(linears) == len(texts) if basenames is None: #Generate wav and read it wav = audio.inv_mel_spectrogram(mels.T, hparams) audio.save_wav(wav, 'temp.wav', sr=hparams.sample_rate) #Find a better way chunk = 512 f = wave.open('temp.wav', 'rb') p = pyaudio.PyAudio() stream = p.open(format=p.get_format_from_width(f.getsampwidth()), channels=f.getnchannels(), rate=f.getframerate(), output=True) data = f.readframes(chunk) while data: stream.write(data) data = f.readframes(chunk) stream.stop_stream() stream.close() p.terminate() return saved_mels_paths = [] speaker_ids = [] for i, mel in enumerate(mels): #Get speaker id for global conditioning (only used with GTA generally) if hparams.gin_channels > 0: raise RuntimeError( 'Please set the speaker_id rule in line 99 of tacotron/synthesizer.py to allow for global condition usage later.' ) speaker_id = '<no_g>' #set the rule to determine speaker id. By using the file basename maybe? (basenames are inside "basenames" variable) speaker_ids.append( speaker_id ) #finish by appending the speaker id. (allows for different speakers per batch if your model is multispeaker) else: speaker_id = '<no_g>' speaker_ids.append(speaker_id) # Write the spectrogram to disk # Note: outputs mel-spectrogram files and target ones have same names, just different folders mel_filename = os.path.join(out_dir, 'mel-{}.npy'.format(basenames[i])) np.save(mel_filename, mel, allow_pickle=False) saved_mels_paths.append(mel_filename) if log_dir is not None: #save wav (mel -> wav) wav = audio.inv_mel_spectrogram(mel.T, hparams) audio.save_wav(wav, os.path.join( log_dir, 'wavs/wav-{}-mel.wav'.format(basenames[i])), sr=hparams.sample_rate) #save alignments plot.plot_alignment(alignments[i], os.path.join( log_dir, 'plots/alignment-{}.png'.format( basenames[i])), title='{}'.format(texts[i]), split_title=True, max_len=target_lengths[i]) #save mel spectrogram plot plot.plot_spectrogram( mel, os.path.join(log_dir, 'plots/mel-{}.png'.format(basenames[i])), title='{}'.format(texts[i]), split_title=True) if hparams.predict_linear: #save wav (linear -> wav) wav = audio.inv_linear_spectrogram(linears[i].T, hparams) audio.save_wav(wav, os.path.join( log_dir, 'wavs/wav-{}-linear.wav'.format( basenames[i])), sr=hparams.sample_rate) #save linear spectrogram plot plot.plot_spectrogram(linears[i], os.path.join( log_dir, 'plots/linear-{}.png'.format( basenames[i])), title='{}'.format(texts[i]), split_title=True, auto_aspect=True) return saved_mels_paths, speaker_ids
def synthesize(self, texts, basenames, out_dir, log_dir, mel_filenames): hparams = self._hparams cleaner_names = [x.strip() for x in hparams.cleaners.split(',')] #[-max, max] or [0,max] T2_output_range = (-hparams.max_abs_value, hparams.max_abs_value) if hparams.symmetric_mels else (0, hparams.max_abs_value) #Repeat last sample until number of samples is dividable by the number of GPUs (last run scenario) while len(texts) % hparams.tacotron_synthesis_batch_size != 0: texts.append(texts[-1]) basenames.append(basenames[-1]) if mel_filenames is not None: mel_filenames.append(mel_filenames[-1]) assert 0 == len(texts) % self._hparams.tacotron_num_gpus seqs = [np.asarray(text_to_sequence(text, cleaner_names)) for text in texts] input_lengths = [len(seq) for seq in seqs] size_per_device = len(seqs) // self._hparams.tacotron_num_gpus #Pad inputs according to each GPU max length input_seqs = None split_infos = [] for i in range(self._hparams.tacotron_num_gpus): device_input = seqs[size_per_device*i: size_per_device*(i+1)] device_input, max_seq_len = self._prepare_inputs(device_input) input_seqs = np.concatenate((input_seqs, device_input), axis=1) if input_seqs is not None else device_input split_infos.append([max_seq_len, 0, 0, 0]) feed_dict = { self.inputs: input_seqs, self.input_lengths: np.asarray(input_lengths, dtype=np.int32), } if self.gta: np_targets = [np.load(mel_filename) for mel_filename in mel_filenames] target_lengths = [len(np_target) for np_target in np_targets] #pad targets according to each GPU max length target_seqs = None for i in range(self._hparams.tacotron_num_gpus): device_target = np_targets[size_per_device*i: size_per_device*(i+1)] device_target, max_target_len = self._prepare_targets(device_target, self._hparams.outputs_per_step) target_seqs = np.concatenate((target_seqs, device_target), axis=1) if target_seqs is not None else device_target split_infos[i][1] = max_target_len #Not really used but setting it in case for future development maybe? feed_dict[self.targets] = target_seqs assert len(np_targets) == len(texts) feed_dict[self.split_infos] = np.asarray(split_infos, dtype=np.int32) if self.gta or not hparams.predict_linear: mels, alignments, stop_tokens = self.session.run([self.mel_outputs, self.alignments, self.stop_token_prediction], feed_dict=feed_dict) #Linearize outputs (n_gpus -> 1D) mels = [mel for gpu_mels in mels for mel in gpu_mels] alignments = [align for gpu_aligns in alignments for align in gpu_aligns] stop_tokens = [token for gpu_token in stop_tokens for token in gpu_token] if not self.gta: #Natural batch synthesis #Get Mel lengths for the entire batch from stop_tokens predictions target_lengths = self._get_output_lengths(stop_tokens) #Take off the batch wise padding mels = [mel[:target_length, :] for mel, target_length in zip(mels, target_lengths)] assert len(mels) == len(texts) else: linears, mels, alignments, stop_tokens = self.session.run([self.linear_outputs, self.mel_outputs, self.alignments, self.stop_token_prediction], feed_dict=feed_dict) #Linearize outputs (1D arrays) linears = [linear for gpu_linear in linears for linear in gpu_linear] mels = [mel for gpu_mels in mels for mel in gpu_mels] alignments = [align for gpu_aligns in alignments for align in gpu_aligns] stop_tokens = [token for gpu_token in stop_tokens for token in gpu_token] #Natural batch synthesis #Get Mel/Linear lengths for the entire batch from stop_tokens predictions target_lengths = self._get_output_lengths(stop_tokens) #Take off the batch wise padding mels = [mel[:target_length, :] for mel, target_length in zip(mels, target_lengths)] linears = [linear[:target_length, :] for linear, target_length in zip(linears, target_lengths)] linears = np.clip(linears, T2_output_range[0], T2_output_range[1]) assert len(mels) == len(linears) == len(texts) mels = np.clip(mels, T2_output_range[0], T2_output_range[1]) if basenames is None: #Generate wav and read it if hparams.GL_on_GPU: wav = self.session.run(self.GLGPU_mel_outputs, feed_dict={self.GLGPU_mel_inputs: mels[0]}) wav = audio.inv_preemphasis(wav, hparams.preemphasis, hparams.preemphasize) else: wav = audio.inv_mel_spectrogram(mels[0].T, hparams) audio.save_wav(wav, 'temp.wav', sr=hparams.sample_rate) #Find a better way if platform.system() == 'Linux': #Linux wav reader os.system('aplay temp.wav') elif platform.system() == 'Windows': #windows wav reader os.system('start /min mplay32 /play /close temp.wav') else: raise RuntimeError('Your OS type is not supported yet, please add it to "tacotron/synthesizer.py, line-165" and feel free to make a Pull Request ;) Thanks!') return saved_mels_paths = [] speaker_ids = [] for i, mel in enumerate(mels): #Get speaker id for global conditioning (only used with GTA generally) if hparams.gin_channels > 0: raise RuntimeError('Please set the speaker_id rule in line 99 of tacotron/synthesizer.py to allow for global condition usage later.') speaker_id = '<no_g>' #set the rule to determine speaker id. By using the file basename maybe? (basenames are inside "basenames" variable) speaker_ids.append(speaker_id) #finish by appending the speaker id. (allows for different speakers per batch if your model is multispeaker) else: speaker_id = '<no_g>' speaker_ids.append(speaker_id) # Write the spectrogram to disk # Note: outputs mel-spectrogram files and target ones have same names, just different folders mel_filename = os.path.join(out_dir, 'mel-{}.npy'.format(basenames[i])) np.save(mel_filename, mel, allow_pickle=False) saved_mels_paths.append(mel_filename) if log_dir is not None: #save wav (mel -> wav) if hparams.GL_on_GPU: wav = self.session.run(self.GLGPU_mel_outputs, feed_dict={self.GLGPU_mel_inputs: mel}) wav = audio.inv_preemphasis(wav, hparams.preemphasis, hparams.preemphasize) else: wav = audio.inv_mel_spectrogram(mel.T, hparams) audio.save_wav(wav, os.path.join(log_dir, 'wavs/wav-{}-mel.wav'.format(basenames[i])), sr=hparams.sample_rate) #save alignments plot.plot_alignment(alignments[i], os.path.join(log_dir, 'plots/alignment-{}.png'.format(basenames[i])), title='{}'.format(texts[i]), split_title=True, max_len=target_lengths[i]) #save mel spectrogram plot plot.plot_spectrogram(mel, os.path.join(log_dir, 'plots/mel-{}.png'.format(basenames[i])), title='{}'.format(texts[i]), split_title=True) if hparams.predict_linear: #save wav (linear -> wav) if hparams.GL_on_GPU: wav = self.session.run(self.GLGPU_lin_outputs, feed_dict={self.GLGPU_lin_inputs: linears[i]}) wav = audio.inv_preemphasis(wav, hparams.preemphasis, hparams.preemphasize) else: wav = audio.inv_linear_spectrogram(linears[i].T, hparams) audio.save_wav(wav, os.path.join(log_dir, 'wavs/wav-{}-linear.wav'.format(basenames[i])), sr=hparams.sample_rate) #save linear spectrogram plot plot.plot_spectrogram(linears[i], os.path.join(log_dir, 'plots/linear-{}.png'.format(basenames[i])), title='{}'.format(texts[i]), split_title=True, auto_aspect=True) return saved_mels_paths, speaker_ids
def train(log_dir, args, hparams): save_dir = os.path.join(log_dir, 'taco_pretrained') plot_dir = os.path.join(log_dir, 'plots') wav_dir = os.path.join(log_dir, 'wavs') mel_dir = os.path.join(log_dir, 'mel-spectrograms') eval_dir = os.path.join(log_dir, 'eval-dir') eval_plot_dir = os.path.join(eval_dir, 'plots') eval_wav_dir = os.path.join(eval_dir, 'wavs') tensorboard_dir = os.path.join(log_dir, 'tacotron_events') os.makedirs(save_dir, exist_ok=True) os.makedirs(plot_dir, exist_ok=True) os.makedirs(wav_dir, exist_ok=True) os.makedirs(mel_dir, exist_ok=True) os.makedirs(eval_dir, exist_ok=True) os.makedirs(eval_plot_dir, exist_ok=True) os.makedirs(eval_wav_dir, exist_ok=True) os.makedirs(tensorboard_dir, exist_ok=True) checkpoint_path = os.path.join(save_dir, 'tacotron_model.ckpt') input_path = os.path.join(args.base_dir, args.tacotron_input) if hparams.predict_linear: linear_dir = os.path.join(log_dir, 'linear-spectrograms') os.makedirs(linear_dir, exist_ok=True) log('Checkpoint path: {}'.format(checkpoint_path)) log('Loading training data from: {}'.format(input_path)) log('Using model: {}'.format(args.model)) log(hparams_debug_string()) #Start by setting a seed for repeatability tf.set_random_seed(hparams.tacotron_random_seed) #Set up data feeder coord = tf.train.Coordinator() with tf.variable_scope('datafeeder') as scope: feeder = Feeder(coord, input_path, hparams) #Set up model: global_step = tf.Variable(0, name='global_step', trainable=False) model, stats = model_train_mode(args, feeder, hparams, global_step) eval_model = model_test_mode(args, feeder, hparams, global_step) #Book keeping step = 0 time_window = ValueWindow(100) loss_window = ValueWindow(100) saver = tf.train.Saver(max_to_keep=100) log('Tacotron training set to a maximum of {} steps'.format( args.tacotron_train_steps)) #Memory allocation on the GPU as needed config = tf.ConfigProto() config.gpu_options.allow_growth = True #Train with tf.Session(config=config) as sess: try: summary_writer = tf.summary.FileWriter(tensorboard_dir, sess.graph) sess.run(tf.global_variables_initializer()) #saved model restoring if args.restore: # Restore saved model if the user requested it, default = True try: checkpoint_state = tf.train.get_checkpoint_state(save_dir) if (checkpoint_state and checkpoint_state.model_checkpoint_path): log('Loading checkpoint {}'.format( checkpoint_state.model_checkpoint_path), slack=True) saver.restore(sess, checkpoint_state.model_checkpoint_path) else: log('No model to load at {}'.format(save_dir), slack=True) except tf.errors.OutOfRangeError as e: log('Cannot restore checkpoint: {}'.format(e), slack=True) else: log('Starting new training!', slack=True) #initializing feeder feeder.start_threads(sess) #Training loop while not coord.should_stop() and step < args.tacotron_train_steps: start_time = time.time() step, loss, opt = sess.run( [global_step, model.loss, model.optimize]) time_window.append(time.time() - start_time) loss_window.append(loss) message = 'Step {:7d} [{:.3f} sec/step, loss={:.5f}, avg_loss={:.5f}]'.format( step, time_window.average, loss, loss_window.average) log(message, end='\r', slack=(step % args.checkpoint_interval == 0)) if loss > 100 or np.isnan(loss): log('Loss exploded to {:.5f} at step {}'.format( loss, step)) raise Exception('Loss exploded') if step % args.summary_interval == 0: log('\nWriting summary at step {}'.format(step)) summary_writer.add_summary(sess.run(stats), step) if step % args.eval_interval == 0: #Run eval and save eval stats log('\nRunning evaluation at step {}'.format(step)) eval_losses = [] before_losses = [] after_losses = [] stop_token_losses = [] linear_losses = [] linear_loss = None if hparams.predict_linear: for i in tqdm(range(feeder.test_steps)): eloss, before_loss, after_loss, stop_token_loss, linear_loss, mel_p, mel_t, t_len, align, lin_p = sess.run( [ eval_model.loss, eval_model.before_loss, eval_model.after_loss, eval_model.stop_token_loss, eval_model.linear_loss, eval_model.mel_outputs[0], eval_model.mel_targets[0], eval_model.targets_lengths[0], eval_model.alignments[0], eval_model.linear_outputs[0] ]) eval_losses.append(eloss) before_losses.append(before_loss) after_losses.append(after_loss) stop_token_losses.append(stop_token_loss) linear_losses.append(linear_loss) linear_loss = sum(linear_losses) / len(linear_losses) wav = audio.inv_linear_spectrogram(lin_p.T, hparams) audio.save_wav( wav, os.path.join( eval_wav_dir, 'step-{}-eval-waveform-linear.wav'.format( step)), sr=hparams.sample_rate) else: for i in tqdm(range(feeder.test_steps)): eloss, before_loss, after_loss, stop_token_loss, mel_p, mel_t, t_len, align = sess.run( [ eval_model.loss, eval_model.before_loss, eval_model.after_loss, eval_model.stop_token_loss, eval_model.mel_outputs[0], eval_model.mel_targets[0], eval_model.targets_lengths[0], eval_model.alignments[0] ]) eval_losses.append(eloss) before_losses.append(before_loss) after_losses.append(after_loss) stop_token_losses.append(stop_token_loss) eval_loss = sum(eval_losses) / len(eval_losses) before_loss = sum(before_losses) / len(before_losses) after_loss = sum(after_losses) / len(after_losses) stop_token_loss = sum(stop_token_losses) / len( stop_token_losses) log('Saving eval log to {}..'.format(eval_dir)) #Save some log to monitor model improvement on same unseen sequence wav = audio.inv_mel_spectrogram(mel_p.T, hparams) audio.save_wav( wav, os.path.join( eval_wav_dir, 'step-{}-eval-waveform-mel.wav'.format(step)), sr=hparams.sample_rate) plot.plot_alignment( align, os.path.join(eval_plot_dir, 'step-{}-eval-align.png'.format(step)), info='{}, {}, step={}, loss={:.5f}'.format( args.model, time_string(), step, eval_loss), max_len=t_len // hparams.outputs_per_step) plot.plot_spectrogram( mel_p, os.path.join( eval_plot_dir, 'step-{}-eval-mel-spectrogram.png'.format(step)), info='{}, {}, step={}, loss={:.5}'.format( args.model, time_string(), step, eval_loss), target_spectrogram=mel_t, max_len=t_len) log('Eval loss for global step {}: {:.3f}'.format( step, eval_loss)) log('Writing eval summary!') add_eval_stats(summary_writer, step, linear_loss, before_loss, after_loss, stop_token_loss, eval_loss) if step % args.checkpoint_interval == 0 or step == args.tacotron_train_steps: #Save model and current global step saver.save(sess, checkpoint_path, global_step=global_step) log('\nSaving alignment, Mel-Spectrograms and griffin-lim inverted waveform..' ) if hparams.predict_linear: input_seq, mel_prediction, linear_prediction, alignment, target, target_length = sess.run( [ model.inputs[0], model.mel_outputs[0], model.linear_outputs[0], model.alignments[0], model.mel_targets[0], model.targets_lengths[0], ]) #save predicted linear spectrogram to disk (debug) linear_filename = 'linear-prediction-step-{}.npy'.format( step) np.save(os.path.join(linear_dir, linear_filename), linear_prediction.T, allow_pickle=False) #save griffin lim inverted wav for debug (linear -> wav) wav = audio.inv_linear_spectrogram( linear_prediction.T, hparams) audio.save_wav( wav, os.path.join( wav_dir, 'step-{}-wave-from-linear.wav'.format(step)), sr=hparams.sample_rate) else: input_seq, mel_prediction, alignment, target, target_length = sess.run( [ model.inputs[0], model.mel_outputs[0], model.alignments[0], model.mel_targets[0], model.targets_lengths[0], ]) #save predicted mel spectrogram to disk (debug) mel_filename = 'mel-prediction-step-{}.npy'.format(step) np.save(os.path.join(mel_dir, mel_filename), mel_prediction.T, allow_pickle=False) #save griffin lim inverted wav for debug (mel -> wav) wav = audio.inv_mel_spectrogram(mel_prediction.T, hparams) audio.save_wav( wav, os.path.join(wav_dir, 'step-{}-wave-from-mel.wav'.format(step)), sr=hparams.sample_rate) #save alignment plot to disk (control purposes) plot.plot_alignment( alignment, os.path.join(plot_dir, 'step-{}-align.png'.format(step)), info='{}, {}, step={}, loss={:.5f}'.format( args.model, time_string(), step, loss), max_len=target_length // hparams.outputs_per_step) #save real and predicted mel-spectrogram plot to disk (control purposes) plot.plot_spectrogram( mel_prediction, os.path.join( plot_dir, 'step-{}-mel-spectrogram.png'.format(step)), info='{}, {}, step={}, loss={:.5}'.format( args.model, time_string(), step, loss), target_spectrogram=target, max_len=target_length) log('Input at step {}: {}'.format( step, sequence_to_text(input_seq))) log('Tacotron training complete after {} global steps!'.format( args.tacotron_train_steps), slack=True) return save_dir except Exception as e: log('Exiting due to exception: {}'.format(e), slack=True) traceback.print_exc() coord.request_stop(e)
def gen(content, t): t1 = time.time() out = io.BytesIO() output = np.array([]) mhash = hashlib.md5(content.encode(encoding='UTF-8')).hexdigest() print(content) content = cn2pinyin(content) print(len(content)) ts = content.split("E") t2 = time.time() for text in ts: text = text.strip() if len(text) <= 0: continue text += " E" st1 = time.time() data, wav = synth.eval(text) st2 = time.time() print(">>>>>" + text, "cost=", st2 - st1) output = np.append(output, wav, axis=0) t3 = time.time() audio.save_wav(output, out, hparams.sample_rate) t4 = time.time() if t == "g1": mp3_path = "wavs/" + mhash + ".mp3" song = AudioSegment.from_file(out, format='wav') song.set_frame_rate(hparams.sample_rate) song.set_channels(2) filter = "atempo=0.95,highpass=f=300,lowpass=f=3000,aecho=0.8:0.88:6:0.4" song.export( mp3_path, format="mp3", parameters=["-filter_complex", filter, "-q:a", "4", "-vol", "150"]) t5 = time.time() out2 = io.BytesIO() song.export( out2, format="mp3", parameters=["-filter_complex", filter, "-q:a", "4", "-vol", "150"]) data = out2.getvalue() t6 = time.time() print("gen cost", t2 - t1, t3 - t2, t4 - t3, t5 - t4, t6 - t5) return mp3_path, data else: effect = "-rate=-5 -pitch=+4" if t == "g3": effect = "-rate=+45 -pitch=+3" elif t == "b1": effect = "-pitch=-4" wav_file = "wavs/" + mhash + ".wav" audio.save_wav(output, wav_file, hparams.sample_rate) mp3_file = "wavs/" + mhash + ".mp3" out_file = "wavs/" + mhash + "1.wav" # effect ="-rate=-5 -pitch=+4" #"-rate=-10 -pitch=+8" 小姐姐 #"-rate=+45 -pitch=+3" 汤姆猫 popen = Popen("soundstretch " + wav_file + " " + out_file + " " + effect, shell=True, stdout=PIPE, stderr=PIPE) popen.wait() if popen.returncode != 0: print("Error.") song = AudioSegment.from_wav(out_file) song.set_frame_rate(hparams.sample_rate) song.set_channels(1) filter = "atempo=0.95,highpass=f=200,lowpass=f=1000,aecho=0.8:0.88:6:0.4" song.export( mp3_file, format="mp3", parameters=["-filter_complex", filter, "-q:a", "4", "-vol", "200"]) out2 = io.BytesIO() song.export( out2, format="mp3", parameters=["-filter_complex", filter, "-q:a", "4", "-vol", "200"]) data = out2.getvalue() # mp3_path = "wavs/"+mhash + ".mp3" # song = AudioSegment.from_file(out, format='wav') # song.set_frame_rate(hparams.sample_rate) # song.set_channels(2) # filter = "atempo=0.95,highpass=f=300,lowpass=f=3000,aecho=0.8:0.88:6:0.4" # song.export(mp3_path, format="mp3",parameters=["-filter_complex",filter,"-q:a", "4", "-vol", "150"]) # out2 = io.BytesIO() # song.export(out2, format="mp3",parameters=["-filter_complex",filter,"-q:a", "4", "-vol", "150"]) # data = out2.getvalue() # return mp3_path, data return mp3_file, data