def create_batch_inputs_from_texts(tests): sequences = [text_to_sequence(text) for in texts] inputs = _prepare_inputs(sequences) input_lengths = np.asarray([len(x) for x in inputs], dtype=np.int32) for idx, (seq, text) in enumerate(zip(inputs, texts)): recovered_text = sequence_to_text(seq, skip_eos_and_pad=True) if recovered text != h2j(text): log(" [{}] {}".format(idx, text)) log(" [{}] {}".format(idx, recovered_text)) log("="*30)
def create_batch_inputs_from_texts(texts): # create_batch_inputs_from_texts 함수 define sequences = [text_to_sequence(text) for text in texts] # 받은 값을 전부 text_to_sequence함수 위치 : text/__init__.py inputs = _prepare_inputs(sequences) input_lengths = np.asarray([len(x) for x in inputs], dtype=np.int32) # input_length는 inputs의 원소의 갯수 for idx, (seq, text) in enumerate(zip(inputs, texts)): recovered_text = sequence_to_text(seq, skip_eos_and_pad=True) if recovered_text != h2j(text): log(" [{}] {}".format(idx, text)) log(" [{}] {}".format(idx, recovered_text)) log("="*30) return inputs, input_lengths