class FaceGAN(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.model_manager = ModelManager(configer) self.seg_data_loader = DataLoader(configer) self.gan_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.gan_net = self.model_manager.gan_model() self.gan_net = RunnerHelper.load_net(self, self.gan_net) self.optimizer, self.scheduler = Trainer.init( self._get_parameters(), self.configer.get('solver')) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() def _get_parameters(self): return self.gan_net.parameters() def train(self): """ Train function of every epoch during train phase. """ self.gan_net.train() start_time = time.time() # Adjust the learning rate after every epoch. for i, data_dict in enumerate(self.train_loader): Trainer.update(self, solver_dict=self.configer.get('solver')) inputs = data_dict['imgA'] self.data_time.update(time.time() - start_time) # Forward pass. out_dict = self.gan_net(inputs) # outputs = self.module_utilizer.gather(outputs) loss = out_dict['loss'].mean() self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.configer.get('solver', 'lr')['metric'] == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get( 'solver', 'test_interval') == 0: self.val() self.runner_state['epoch'] += 1 def val(self, data_loader=None): """ Validation function during the train phase. """ self.gan_net.eval() start_time = time.time() data_loader = self.val_loader if data_loader is None else data_loader for j, data_dict in enumerate(data_loader): inputs = data_dict['imgA'] with torch.no_grad(): # Forward pass. out_dict = self.gan_net(data_dict) # Compute the loss of the val batch. self.val_losses.update(out_dict['loss'].mean().item(), inputs.size(0)) meta_list = DCHelper.tolist(data_dict['meta']) probe_features = [] gallery_features = [] probe_labels = [] gallery_labels = [] for idx in range(len(meta_list)): gallery_features.append(out_dict['featB'][idx].cpu().numpy()) gallery_labels.append(meta_list[idx]['labelB']) probe_features.append(out_dict['featA'][idx].cpu().numpy()) probe_labels.append(meta_list[idx]['labelA']) rank_1, vr_far_001 = FaceGANTest.decode(probe_features, gallery_features, probe_labels, gallery_labels) Log.info('Rank1 accuracy is {}'.format(rank_1)) Log.info('VR@FAR=0.1% accuracy is {}'.format(vr_far_001)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() RunnerHelper.save_net(self, self.gan_net, val_loss=self.val_losses.avg) # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.gan_net.train()
class ImageTranslator(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.model_manager = ModelManager(configer) self.seg_data_loader = DataLoader(configer) self.gan_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.gan_net = self.model_manager.gan_model() self.gan_net = RunnerHelper.load_net(self, self.gan_net) self.optimizer_G, self.scheduler_G = Trainer.init( self._get_parameters()[0], self.configer.get('solver')) self.optimizer_D, self.scheduler_D = Trainer.init( self._get_parameters()[1], self.configer.get('solver')) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() def _get_parameters(self): params_G = [] params_D = [] params_dict = dict(self.gan_net.named_parameters()) for key, value in params_dict.items(): if 'G' not in key: params_D.append(value) else: params_G.append(value) return params_G, params_D def train(self): """ Train function of every epoch during train phase. """ self.gan_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.scheduler_G.step(self.runner_state['epoch']) self.scheduler_D.step(self.runner_state['epoch']) for i, data_dict in enumerate(self.train_loader): inputs = data_dict['imgA'] self.data_time.update(time.time() - start_time) # Forward pass. out_dict = self.gan_net(data_dict) # outputs = self.module_utilizer.gather(outputs) self.optimizer_G.zero_grad() loss_G = out_dict['loss_G'].mean() loss_G.backward() self.optimizer_G.step() self.optimizer_D.zero_grad() loss_D = out_dict['loss_D'].mean() loss_D.backward() self.optimizer_D.step() loss = loss_G + loss_D self.train_losses.update(loss.item(), inputs.size(0)) # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), [ RunnerHelper.get_lr(self.optimizer_G), RunnerHelper.get_lr(self.optimizer_D) ], batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.configer.get('solver', 'lr')['metric'] == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get( 'solver', 'test_interval') == 0: self.val() self.runner_state['epoch'] += 1 def val(self, data_loader=None): """ Validation function during the train phase. """ self.gan_net.eval() start_time = time.time() data_loader = self.val_loader if data_loader is None else data_loader for j, data_dict in enumerate(data_loader): inputs = data_dict['imgA'] with torch.no_grad(): # Forward pass. out_dict = self.gan_net(data_dict) # Compute the loss of the val batch. self.val_losses.update( out_dict['loss_G'].mean().item() + out_dict['loss_D'].mean().item(), inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() RunnerHelper.save_net(self, self.gan_net, val_loss=self.val_losses.avg) # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.gan_net.train()