if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) print('Using config:') pprint.pprint(cfg) ############################## begin ####################################### # train set # imdb, roidb = combined_roidb(args.imdb_name) imdb = get_Imdbs(args.imdb_name) # total num_images total_num = imdb.num_images # initial num_images initialnum = imdb[imdb.item_name(0)].num_images # unlabeled num_images remainnum = imdb[imdb.item_name(1)].num_images print('total num:{}, initial num:{}'.format(total_num,initialnum)) bitmapImdb = BitMap(total_num) roidb = get_training_roidb(imdb) print('{:d} roidb entries'.format(len(roidb))) # output directory where the models are saved output_dir = get_output_dir(imdb, args.tag) print('Output will be saved to `{:s}`'.format(output_dir))
imdb = get_Imdbs(args.imdb_name) roidb = get_training_roidb(imdb) print '{:d} roidb entries'.format(len(roidb)) output_dir = get_output_dir(imdb) print 'Output will be saved to `{:s}`'.format(output_dir) # some statistic to record alamount = 0 ssamount = 0 # set bitmap for AL tableA = BitMap(imdb.num_images) # choose initiail samples:VOC2007 sample_num = imdb.num_images train_num = len(imdb[imdb.item_name(0)].roidb) print 'All VOC2007 images use for initial train, image numbers:%d' % ( train_num) for i in range(train_num): tableA.set(i) train_roidb = [roidb[i] for i in range(train_num)] pretrained_model_name = args.pretrained_model # static parameters tao = 60000 beta = 1000 # updatable hypeparameters gamma = 0.6 mylambda = np.array([-np.log(0.9)] * imdb.num_classes) # train record
######################## begin ############################# imdb = get_Imdbs(args.imdb_name) roidb = get_training_roidb(imdb) print '{:d} roidb entries'.format(len(roidb)) output_dir = get_output_dir(imdb) print 'Output will be saved to `{:s}`'.format(output_dir) # some statistic to record alamount = 0; ssamount = 0 discardamount = 0 # set bitmap for AL bitmapImdb = BitMap(imdb.num_images) # choose initiail samples:VOC2007 initial_num = len(imdb[imdb.item_name(0)].roidb) print 'All VOC2007 images use for initial train, image numbers:%d'%(initial_num) for i in range(initial_num): bitmapImdb.set(i) train_roidb = [roidb[i] for i in range(initial_num)] pretrained_model_name = args.pretrained_model # static parameters tao = args.max_iters # initial hypeparameters gamma = 0.15; clslambda = np.array([-np.log(0.9)]*imdb.num_classes) # train record loopcounter = 0; train_iters = 0; iters_sum = train_iters # control al proportion al_proportion_checkpoint = [int(x*initial_num) for x in np.linspace(0.3,2,10)]