def __init__(self, configer): self.configer = configer self.seg_visualizer = SegVisualizer(configer) self.seg_parser = SegParser(configer) self.seg_model_manager = SegModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.seg_net = None
def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_parser = SegParser(configer) self.seg_model_manager = ModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.module_runner = ModuleRunner(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.seg_net = None self._init_model()
def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.seg_visualizer = SegVisualizer(configer) self.seg_loss_manager = SegLossManager(configer) self.module_utilizer = ModuleUtilizer(configer) self.seg_model_manager = SegModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.lr = None self.iters = None
def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.seg_running_score = SegRunningScore(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_loss_manager = LossManager(configer) self.module_runner = ModuleRunner(configer) self.seg_model_manager = ModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.optim_scheduler = OptimScheduler(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model()
class FCNSegmentorTest(object): def __init__(self, configer): self.configer = configer self.seg_visualizer = SegVisualizer(configer) self.seg_parser = SegParser(configer) self.seg_model_manager = SegModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.seg_net = None def init_model(self): self.seg_net = self.seg_model_manager.semantic_segmentor() self.seg_net = self.module_utilizer.load_net(self.seg_net) self.seg_net.eval() def __test_img(self, image_path, save_path): image = ImageHelper.pil_open_rgb(image_path) ori_width, ori_height = image.size image = Scale(size=self.configer.get('data', 'input_size'))(image) image = ToTensor()(image) image = Normalize(mean=self.configer.get('trans_params', 'mean'), std=self.configer.get('trans_params', 'std'))(image) with torch.no_grad(): inputs = image.unsqueeze(0).to(self.device) results = self.seg_net.forward(inputs) label_map = results.data.cpu().numpy().argmax(axis=1)[0].squeeze() label_img = np.array(label_map, dtype=np.uint8) if not self.configer.is_empty('details', 'label_list'): label_img = self.__relabel(label_img) label_img = Image.fromarray(label_img, 'P') label_img = label_img.resize((ori_width, ori_height), Image.NEAREST) label_img.save(save_path) def __relabel(self, label_map): height, width = label_map.shape label_dst = np.zeros((height, width), dtype=np.uint8) for i in range(self.configer.get('data', 'num_classes')): label_dst[label_map == i] = self.configer.get( 'details', 'label_list')[i] label_dst = np.array(label_dst, dtype=np.uint8) return label_dst def test(self): base_dir = os.path.join(self.configer.get('output_dir'), 'val/results/seg', self.configer.get('dataset')) test_img = self.configer.get('test_img') test_dir = self.configer.get('test_dir') if test_img is None and test_dir is None: Log.error('test_img & test_dir not exists.') exit(1) if test_img is not None and test_dir is not None: Log.error('Either test_img or test_dir.') exit(1) if test_img is not None: base_dir = os.path.join(base_dir, 'test_img') if not os.path.exists(base_dir): os.makedirs(base_dir) filename = test_img.rstrip().split('/')[-1] save_path = os.path.join(base_dir, filename) self.__test_img(test_img, save_path) else: base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1]) if not os.path.exists(base_dir): os.makedirs(base_dir) for filename in FileHelper.list_dir(test_dir): image_path = os.path.join(test_dir, filename) save_path = os.path.join(base_dir, filename) if not os.path.exists(os.path.dirname(save_path)): os.makedirs(os.path.dirname(save_path)) self.__test_img(image_path, save_path) def debug(self): base_dir = os.path.join(self.configer.get('project_dir'), 'vis/results/seg', self.configer.get('dataset'), 'debug') if not os.path.exists(base_dir): os.makedirs(base_dir) val_data_loader = self.seg_data_loader.get_valloader() count = 0 for i, (inputs, targets) in enumerate(val_data_loader): for j in range(inputs.size(0)): count = count + 1 if count > 20: exit(1) ori_img = DeNormalize( mean=self.configer.get('trans_params', 'mean'), std=self.configer.get('trans_params', 'std'))(inputs[j]) ori_img = ori_img.numpy().transpose(1, 2, 0).astype(np.uint8) image_bgr = cv2.cvtColor(ori_img, cv2.COLOR_RGB2BGR) label_map = targets[j].numpy() image_canvas = self.seg_parser.colorize(label_map, image_canvas=image_bgr) cv2.imwrite( os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)), image_canvas) cv2.imshow('main', image_canvas) cv2.waitKey()
class Trainer(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.seg_running_score = SegRunningScore(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_loss_manager = LossManager(configer) self.module_runner = ModuleRunner(configer) self.seg_model_manager = ModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.optim_scheduler = OptimScheduler(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model() def _init_model(self): self.seg_net = self.seg_model_manager.semantic_segmentor() self.seg_net = self.module_runner.load_net(self.seg_net) Log.info('Params Group Method: {}'.format( self.configer.get('optim', 'group_method'))) if self.configer.get('optim', 'group_method') == 'decay': params_group = self.group_weight(self.seg_net) else: assert self.configer.get('optim', 'group_method') is None params_group = self._get_parameters() self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer( params_group) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() self.pixel_loss = self.seg_loss_manager.get_seg_loss() @staticmethod def group_weight(module): group_decay = [] group_no_decay = [] for m in module.modules(): if isinstance(m, nn.Linear): group_decay.append(m.weight) if m.bias is not None: group_no_decay.append(m.bias) elif isinstance(m, nn.modules.conv._ConvNd): group_decay.append(m.weight) if m.bias is not None: group_no_decay.append(m.bias) else: if hasattr(m, 'weight'): group_no_decay.append(m.weight) if hasattr(m, 'bias'): group_no_decay.append(m.bias) assert len(list( module.parameters())) == len(group_decay) + len(group_no_decay) groups = [ dict(params=group_decay), dict(params=group_no_decay, weight_decay=.0) ] return groups def _get_parameters(self): bb_lr = [] nbb_lr = [] params_dict = dict(self.seg_net.named_parameters()) for key, value in params_dict.items(): if 'backbone' not in key: nbb_lr.append(value) else: bb_lr.append(value) params = [{ 'params': bb_lr, 'lr': self.configer.get('lr', 'base_lr') }, { 'params': nbb_lr, 'lr': self.configer.get('lr', 'base_lr') * self.configer.get('lr', 'nbb_mult') }] return params def __train(self): """ Train function of every epoch during train phase. """ self.seg_net.train() start_time = time.time() for i, data_dict in enumerate(self.train_loader): if self.configer.get('lr', 'metric') == 'iters': self.scheduler.step(self.configer.get('iters')) else: self.scheduler.step(self.configer.get('epoch')) if self.configer.get('lr', 'is_warm'): self.module_runner.warm_lr(self.configer.get('iters'), self.scheduler, self.optimizer, backbone_list=[ 0, ]) inputs = data_dict['img'] targets = data_dict['labelmap'] self.data_time.update(time.time() - start_time) # Change the data type. # inputs, targets = self.module_runner.to_device(inputs, targets) # Forward pass. outputs = self.seg_net(inputs) # outputs = self.module_utilizer.gather(outputs) # Compute the loss of the train batch & backward. loss = self.pixel_loss(outputs, targets, gathered=self.configer.get( 'network', 'gathered')) if self.configer.exists('train', 'loader') and self.configer.get( 'train', 'loader') == 'rs': batch_size = self.configer.get( 'train', 'batch_size') * self.configer.get( 'train', 'batch_per_gpu') self.train_losses.update(loss.item(), batch_size) else: self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.plus_one('iters') # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.configer.get('epoch'), self.configer.get('iters'), self.configer.get('solver', 'display_iter'), self.module_runner.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.configer.get('iters') == self.configer.get( 'solver', 'max_iters'): break # Check to val the current model. if self.configer.get('iters') % self.configer.get( 'solver', 'test_interval') == 0: self.__val() self.configer.plus_one('epoch') def __val(self, data_loader=None): """ Validation function during the train phase. """ self.seg_net.eval() start_time = time.time() data_loader = self.val_loader if data_loader is None else data_loader for j, data_dict in enumerate(data_loader): inputs = data_dict['img'] targets = data_dict['labelmap'] with torch.no_grad(): # Change the data type. inputs, targets = self.module_runner.to_device(inputs, targets) # Forward pass. outputs = self.seg_net(inputs) # Compute the loss of the val batch. loss = self.pixel_loss(outputs, targets, gathered=self.configer.get( 'network', 'gathered')) outputs = self.module_runner.gather(outputs) self.val_losses.update(loss.item(), inputs.size(0)) self._update_running_score(outputs[-1], data_dict['meta']) # self.seg_running_score.update(pred.max(1)[1].cpu().numpy(), targets.cpu().numpy()) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.update(['performance'], self.seg_running_score.get_mean_iou()) self.configer.update(['val_loss'], self.val_losses.avg) self.module_runner.save_net(self.seg_net, save_mode='performance') self.module_runner.save_net(self.seg_net, save_mode='val_loss') # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) Log.info('Mean IOU: {}\n'.format( self.seg_running_score.get_mean_iou())) Log.info('Pixel ACC: {}\n'.format( self.seg_running_score.get_pixel_acc())) self.batch_time.reset() self.val_losses.reset() self.seg_running_score.reset() self.seg_net.train() def _update_running_score(self, pred, metas): pred = pred.permute(0, 2, 3, 1) for i in range(pred.size(0)): ori_img_size = metas[i]['ori_img_size'] border_size = metas[i]['border_size'] ori_target = metas[i]['ori_target'] total_logits = cv2.resize( pred[i, :border_size[1], :border_size[0]].cpu().numpy(), tuple(ori_img_size), interpolation=cv2.INTER_CUBIC) labelmap = np.argmax(total_logits, axis=-1) self.seg_running_score.update(labelmap[None], ori_target[None]) def train(self): # cudnn.benchmark = True if self.configer.get('network', 'resume') is not None and self.configer.get( 'network', 'resume_val'): self.__val() while self.configer.get('iters') < self.configer.get( 'solver', 'max_iters'): self.__train() self.__val(data_loader=self.seg_data_loader.get_valloader( dataset='val')) self.__val(data_loader=self.seg_data_loader.get_valloader( dataset='train'))
class FCNSegmentor(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.seg_visualizer = SegVisualizer(configer) self.seg_loss_manager = SegLossManager(configer) self.module_utilizer = ModuleUtilizer(configer) self.seg_model_manager = SegModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.lr = None self.iters = None def init_model(self): self.seg_net = self.seg_model_manager.seg_net() self.iters = 0 self.seg_net, _ = self.module_utilizer.load_net(self.seg_net) self.optimizer, self.lr = self.module_utilizer.update_optimizer(self.seg_net, self.iters) if self.configer.get('dataset') == 'cityscape': self.train_loader = self.seg_data_loader.get_trainloader(FSCityScapeLoader) self.val_loader = self.seg_data_loader.get_valloader(FSCityScapeLoader) else: Log.error('Dataset: {} is not valid!'.format(self.configer.get('dataset'))) exit(1) self.pixel_loss = self.seg_loss_manager.get_seg_loss('cross_entropy_loss') def __train(self): """ Train function of every epoch during train phase. """ self.seg_net.train() start_time = time.time() # data_tuple: (inputs, heatmap, maskmap, tagmap, num_objects) for i, data_tuple in enumerate(self.train_loader): self.data_time.update(time.time() - start_time) # Change the data type. if len(data_tuple) < 2: Log.error('Train Loader Error!') exit(0) inputs = Variable(data_tuple[0].cuda(async=True)) targets = Variable(data_tuple[1].cuda(async=True)) # Forward pass. outputs = self.seg_net(inputs) # Compute the loss of the train batch & backward. loss_pixel = self.pixel_loss(outputs, targets) loss = loss_pixel self.train_losses.update(loss.data[0], inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.iters += 1 # Print the log info & reset the states. if self.iters % self.configer.get('solver', 'display_iter') == 0: Log.info('Train Iteration: {0}\t' 'Time {batch_time.sum:.3f}s / {1}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {1}iters, ({data_time.avg:3f})\n' 'Learning rate = {2}\n' 'Loss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'.format( self.iters, self.configer.get('solver', 'display_iter'), self.lr, batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ self.iters % self.configer.get('solver', 'test_interval') == 0: self.__val() self.optimizer, self.lr = self.module_utilizer.update_optimizer(self.seg_net, self.iters) def __val(self): """ Validation function during the train phase. """ self.seg_net.eval() start_time = time.time() for j, data_tuple in enumerate(self.val_loader): # Change the data type. inputs = Variable(data_tuple[0].cuda(async=True), volatile=True) targets = Variable(data_tuple[1].cuda(async=True), volatile=True) # Forward pass. outputs = self.seg_net(inputs) # Compute the loss of the val batch. loss_pixel = self.pixel_loss(outputs, targets) loss = loss_pixel self.val_losses.update(loss.data[0], inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.module_utilizer.save_net(self.seg_net, self.iters) # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format( batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.seg_net.train() def train(self): cudnn.benchmark = True while self.iters < self.configer.get('solver', 'max_iter'): self.__train() if self.iters == self.configer.get('solver', 'max_iter'): break
class FCNSegmentor(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.seg_running_score = SegRunningScore(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_loss_manager = SegLossManager(configer) self.module_utilizer = ModuleUtilizer(configer) self.data_transformer = DataTransformer(configer) self.seg_model_manager = SegModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.optim_scheduler = OptimScheduler(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model() def _init_model(self): self.seg_net = self.seg_model_manager.semantic_segmentor() self.seg_net = self.module_utilizer.load_net(self.seg_net) self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer( self._get_parameters()) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() self.pixel_loss = self.seg_loss_manager.get_seg_loss('fcn_seg_loss') if self.configer.get('network', 'bn_type') == 'syncbn': self.pixel_loss = DataParallelCriterion(self.pixel_loss).cuda() def _get_parameters(self): lr_1 = [] lr_10 = [] params_dict = dict(self.seg_net.named_parameters()) for key, value in params_dict.items(): if 'backbone.' not in key: lr_10.append(value) else: lr_1.append(value) params = [{ 'params': lr_1, 'lr': self.configer.get('lr', 'base_lr') }, { 'params': lr_10, 'lr': self.configer.get('lr', 'base_lr') * 1.0 }] return params def __train(self): """ Train function of every epoch during train phase. """ self.seg_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.scheduler.step(self.configer.get('epoch')) for i, data_dict in enumerate(self.train_loader): inputs = data_dict['img'] targets = data_dict['labelmap'] self.data_time.update(time.time() - start_time) # Change the data type. inputs, targets = self.module_utilizer.to_device(inputs, targets) # Forward pass. outputs = self.seg_net(inputs) # Compute the loss of the train batch & backward. loss = self.pixel_loss(outputs, targets) self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.plus_one('iters') # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.configer.get('epoch'), self.configer.get('iters'), self.configer.get('solver', 'display_iter'), self.scheduler.get_lr(), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ self.configer.get('iters') % self.configer.get('solver', 'test_interval') == 0: self.__val() self.configer.plus_one('epoch') def __val(self): """ Validation function during the train phase. """ self.seg_net.eval() start_time = time.time() for j, data_dict in enumerate(self.val_loader): inputs = data_dict['img'] targets = data_dict['labelmap'] with torch.no_grad(): # Change the data type. inputs, targets = self.module_utilizer.to_device( inputs, targets) # Forward pass. outputs = self.seg_net(inputs) # Compute the loss of the val batch. loss = self.pixel_loss(outputs, targets) outputs = self.module_utilizer.gather(outputs) pred = outputs[0] self.val_losses.update(loss.item(), inputs.size(0)) self.seg_running_score.update( pred.max(1)[1].cpu().numpy(), targets.cpu().numpy()) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.update_value(['performance'], self.seg_running_score.get_mean_iou()) self.configer.update_value(['val_loss'], self.val_losses.avg) self.module_utilizer.save_net(self.seg_net, save_mode='performance') self.module_utilizer.save_net(self.seg_net, save_mode='val_loss') # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) Log.info('Mean IOU: {}\n'.format( self.seg_running_score.get_mean_iou())) self.batch_time.reset() self.val_losses.reset() self.seg_running_score.reset() self.seg_net.train() def train(self): cudnn.benchmark = True if self.configer.get('network', 'resume') is not None and self.configer.get( 'network', 'resume_val'): self.__val() while self.configer.get('epoch') < self.configer.get( 'solver', 'max_epoch'): self.__train() if self.configer.get('epoch') == self.configer.get( 'solver', 'max_epoch'): break
class FCNSegmentor(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.seg_visualizer = SegVisualizer(configer) self.seg_loss_manager = SegLossManager(configer) self.module_utilizer = ModuleUtilizer(configer) self.seg_model_manager = SegModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.lr = None self.iters = None def init_model(self): self.seg_net = self.seg_model_manager.seg_net() self.iters = 0 self.seg_net, _ = self.module_utilizer.load_net(self.seg_net) self.optimizer, self.lr = self.module_utilizer.update_optimizer( self.seg_net, self.iters) if self.configer.get('dataset') == 'cityscape': self.train_loader = self.seg_data_loader.get_trainloader( FSCityScapeLoader) self.val_loader = self.seg_data_loader.get_valloader( FSCityScapeLoader) else: Log.error('Dataset: {} is not valid!'.format( self.configer.get('dataset'))) exit(1) self.pixel_loss = self.seg_loss_manager.get_seg_loss( 'cross_entropy_loss') def __train(self): """ Train function of every epoch during train phase. """ self.seg_net.train() start_time = time.time() # data_tuple: (inputs, heatmap, maskmap, tagmap, num_objects) for i, data_tuple in enumerate(self.train_loader): self.data_time.update(time.time() - start_time) # Change the data type. if len(data_tuple) < 2: Log.error('Train Loader Error!') exit(0) inputs = Variable(data_tuple[0].cuda(async=True)) targets = Variable(data_tuple[1].cuda(async=True)) # Forward pass. outputs = self.seg_net(inputs) # Compute the loss of the train batch & backward. loss_pixel = self.pixel_loss(outputs, targets) loss = loss_pixel self.train_losses.update(loss.data[0], inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.iters += 1 # Print the log info & reset the states. if self.iters % self.configer.get('solver', 'display_iter') == 0: Log.info( 'Train Iteration: {0}\t' 'Time {batch_time.sum:.3f}s / {1}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {1}iters, ({data_time.avg:3f})\n' 'Learning rate = {2}\n' 'Loss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'.format( self.iters, self.configer.get('solver', 'display_iter'), self.lr, batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ self.iters % self.configer.get('solver', 'test_interval') == 0: self.__val() self.optimizer, self.lr = self.module_utilizer.update_optimizer( self.seg_net, self.iters) def __val(self): """ Validation function during the train phase. """ self.seg_net.eval() start_time = time.time() for j, data_tuple in enumerate(self.val_loader): # Change the data type. inputs = Variable(data_tuple[0].cuda(async=True), volatile=True) targets = Variable(data_tuple[1].cuda(async=True), volatile=True) # Forward pass. outputs = self.seg_net(inputs) # Compute the loss of the val batch. loss_pixel = self.pixel_loss(outputs, targets) loss = loss_pixel self.val_losses.update(loss.data[0], inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.module_utilizer.save_net(self.seg_net, self.iters) # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.seg_net.train() def train(self): cudnn.benchmark = True while self.iters < self.configer.get('solver', 'max_iter'): self.__train() if self.iters == self.configer.get('solver', 'max_iter'): break
class FCNSegmentorTest(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_parser = SegParser(configer) self.seg_model_manager = SegModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.data_transformer = DataTransformer(configer) self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.seg_net = None self._init_model() def _init_model(self): self.seg_net = self.seg_model_manager.semantic_segmentor() self.seg_net = self.module_utilizer.load_net(self.seg_net) self.seg_net.eval() def __test_img(self, image_path, label_path, vis_path, raw_path): Log.info('Image Path: {}'.format(image_path)) ori_image = ImageHelper.read_image(image_path, tool=self.configer.get('data', 'image_tool'), mode=self.configer.get('data', 'input_mode')) ori_width, ori_height = ImageHelper.get_size(ori_image) total_logits = np.zeros((ori_height, ori_width, self.configer.get('data', 'num_classes')), np.float32) for scale in self.configer.get('test', 'scale_search'): image = self.blob_helper.make_input(image=ori_image, input_size=self.configer.get('test', 'input_size'), scale=scale) if self.configer.get('test', 'crop_test'): crop_size = self.configer.get('test', 'crop_size') if image.size()[3] > crop_size[0] and image.size()[2] > crop_size[1]: results = self._crop_predict(image, crop_size) else: results = self._predict(image) else: results = self._predict(image) results = cv2.resize(results, (ori_width, ori_height), interpolation=cv2.INTER_LINEAR) total_logits += results if self.configer.get('test', 'mirror'): if self.configer.get('data', 'image_tool') == 'cv2': image = cv2.flip(ori_image, 1) else: image = ori_image.transpose(Image.FLIP_LEFT_RIGHT) image = self.blob_helper.make_input(image, input_size=self.configer.get('test', 'input_size'), scale=1.0) if self.configer.get('test', 'crop_test'): crop_size = self.configer.get('test', 'crop_size') if image.size()[3] > crop_size[0] and image.size()[2] > crop_size[1]: results = self._crop_predict(image, crop_size) else: results = self._predict(image) else: results = self._predict(image) results = cv2.resize(results[:, ::-1], (ori_width, ori_height), interpolation=cv2.INTER_LINEAR) total_logits += results label_map = np.argmax(total_logits, axis=-1) label_img = np.array(label_map, dtype=np.uint8) image_bgr = cv2.cvtColor(np.array(ori_image), cv2.COLOR_RGB2BGR) image_canvas = self.seg_parser.colorize(label_img, image_canvas=image_bgr) ImageHelper.save(image_canvas, save_path=vis_path) ImageHelper.save(ori_image, save_path=raw_path) if not self.configer.is_empty('data', 'label_list'): label_img = self.__relabel(label_img) label_img = Image.fromarray(label_img, 'P') Log.info('Label Path: {}'.format(label_path)) ImageHelper.save(label_img, label_path) def _crop_predict(self, image, crop_size): height, width = image.size()[2:] np_image = image.squeeze(0).permute(1, 2, 0).cpu().numpy() height_starts = self._decide_intersection(height, crop_size[1]) width_starts = self._decide_intersection(width, crop_size[0]) split_crops = [] for height in height_starts: for width in width_starts: image_crop = np_image[height:height + crop_size[1], width:width + crop_size[0]] split_crops.append(image_crop[np.newaxis, :]) split_crops = np.concatenate(split_crops, axis=0) # (n, crop_image_size, crop_image_size, 3) inputs = torch.from_numpy(split_crops).permute(0, 3, 1, 2).to(self.device) with torch.no_grad(): results = self.seg_net.forward(inputs) results = results[0].permute(0, 2, 3, 1).cpu().numpy() reassemble = np.zeros((np_image.shape[0], np_image.shape[1], results.shape[-1]), np.float32) index = 0 for height in height_starts: for width in width_starts: reassemble[height:height+crop_size[1], width:width+crop_size[0]] += results[index] index += 1 return reassemble def _decide_intersection(self, total_length, crop_length): stride = int(crop_length * self.configer.get('test', 'crop_stride_ratio')) # set the stride as the paper do times = (total_length - crop_length) // stride + 1 cropped_starting = [] for i in range(times): cropped_starting.append(stride*i) if total_length - cropped_starting[-1] > crop_length: cropped_starting.append(total_length - crop_length) # must cover the total image return cropped_starting def _predict(self, inputs): with torch.no_grad(): results = self.seg_net.forward(inputs) results = results[0].squeeze().permute(1, 2, 0).cpu().numpy() return results def __relabel(self, label_map): height, width = label_map.shape label_dst = np.zeros((height, width), dtype=np.uint8) for i in range(self.configer.get('data', 'num_classes')): label_dst[label_map == i] = self.configer.get('data', 'label_list')[i] label_dst = np.array(label_dst, dtype=np.uint8) return label_dst def test(self): base_dir = os.path.join(self.configer.get('project_dir'), 'val/results/seg', self.configer.get('dataset')) test_img = self.configer.get('test_img') test_dir = self.configer.get('test_dir') if test_img is None and test_dir is None: Log.error('test_img & test_dir not exists.') exit(1) if test_img is not None and test_dir is not None: Log.error('Either test_img or test_dir.') exit(1) if test_img is not None: base_dir = os.path.join(base_dir, 'test_img') filename = test_img.rstrip().split('/')[-1] label_path = os.path.join(base_dir, 'label', '{}.png'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join(base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) FileHelper.make_dirs(label_path, is_file=True) FileHelper.make_dirs(raw_path, is_file=True) FileHelper.make_dirs(vis_path, is_file=True) self.__test_img(test_img, label_path, vis_path, raw_path) else: base_dir = os.path.join(base_dir, 'test_dir', test_dir.rstrip('/').split('/')[-1]) FileHelper.make_dirs(base_dir) for filename in FileHelper.list_dir(test_dir): image_path = os.path.join(test_dir, filename) label_path = os.path.join(base_dir, 'label', '{}.png'.format('.'.join(filename.split('.')[:-1]))) raw_path = os.path.join(base_dir, 'raw', filename) vis_path = os.path.join(base_dir, 'vis', '{}_vis.png'.format('.'.join(filename.split('.')[:-1]))) FileHelper.make_dirs(label_path, is_file=True) FileHelper.make_dirs(raw_path, is_file=True) FileHelper.make_dirs(vis_path, is_file=True) self.__test_img(image_path, label_path, vis_path, raw_path) def debug(self): base_dir = os.path.join(self.configer.get('project_dir'), 'vis/results/seg', self.configer.get('dataset'), 'debug') if not os.path.exists(base_dir): os.makedirs(base_dir) count = 0 for i, data_dict in enumerate(self.seg_data_loader.get_trainloader()): inputs = data_dict['img'] targets = data_dict['labelmap'] for j in range(inputs.size(0)): count = count + 1 if count > 20: exit(1) image_bgr = self.blob_helper.tensor2bgr(inputs[j]) label_map = targets[j].numpy() image_canvas = self.seg_parser.colorize(label_map, image_canvas=image_bgr) cv2.imwrite(os.path.join(base_dir, '{}_{}_vis.png'.format(i, j)), image_canvas) cv2.imshow('main', image_canvas) cv2.waitKey()
class FCNSegmentor(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.seg_running_score = SegRunningScore(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_loss_manager = SegLossManager(configer) self.module_utilizer = ModuleUtilizer(configer) self.seg_model_manager = SegModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.optim_scheduler = OptimScheduler(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None def init_model(self): self.seg_net = self.seg_model_manager.semantic_segmentor() self.seg_net = self.module_utilizer.load_net(self.seg_net) self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer( self._get_parameters()) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() self.pixel_loss = self.seg_loss_manager.get_seg_loss( 'cross_entropy_loss') def _get_parameters(self): return self.seg_net.parameters() def __train(self): """ Train function of every epoch during train phase. """ if self.configer.get( 'network', 'resume') is not None and self.configer.get('iters') == 0: self.__val() self.seg_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.configer.plus_one('epoch') self.scheduler.step(self.configer.get('epoch')) for i, (inputs, targets) in enumerate(self.train_loader): self.data_time.update(time.time() - start_time) # Change the data type. inputs, targets = self.module_utilizer.to_device(inputs, targets) # Forward pass. outputs = self.seg_net(inputs) # Compute the loss of the train batch & backward. loss = self.pixel_loss(outputs, targets) self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.plus_one('iters') # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.configer.get('epoch'), self.configer.get('iters'), self.configer.get('solver', 'display_iter'), self.scheduler.get_lr(), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() # Check to val the current model. if self.val_loader is not None and \ self.configer.get('iters') % self.configer.get('solver', 'test_interval') == 0: self.__val() def __val(self): """ Validation function during the train phase. """ self.seg_net.eval() start_time = time.time() with torch.no_grad(): for j, (inputs, targets) in enumerate(self.val_loader): # Change the data type. inputs, targets = self.module_utilizer.to_device( inputs, targets) # Forward pass. outputs = self.seg_net(inputs) # Compute the loss of the val batch. loss = self.pixel_loss(outputs, targets) self.val_losses.update(loss.item(), inputs.size(0)) self.seg_running_score.update( outputs.max(1)[1].unsqueeze(1).data, targets.data) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.update_value(['performace'], self.seg_running_score.get_mean_iou()) self.configer.update_value(['val_loss'], self.val_losses.avg) self.module_utilizer.save_net(self.seg_net, metric='performance') self.module_utilizer.save_net(self.seg_net, metric='val_loss') # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) Log.info('Mean IOU: {}'.format( self.seg_running_score.get_mean_iou())) self.batch_time.reset() self.val_losses.reset() self.seg_running_score.reset() self.seg_net.train() def train(self): cudnn.benchmark = True while self.configer.get('epoch') < self.configer.get( 'solver', 'max_epoch'): self.__train() if self.configer.get('epoch') == self.configer.get( 'solver', 'max_epoch'): break