timer = Timer() logging.info(args) config = mobilenetv1_ssd_config #config file for priors etc. train_transform = TrainAugmentation(config.image_size, config.image_mean, config.image_std) target_transform = MatchPrior(config.priors, config.center_variance, config.size_variance, 0.5) test_transform = TestTransform(config.image_size, config.image_mean, config.image_std) logging.info("Prepare training datasets.") train_dataset = VIDDataset(args.datasets, args.cache_path, transform=train_transform, target_transform=target_transform, batch_size=args.batch_size) label_file = os.path.join("models/", "vid-model-labels.txt") store_labels(label_file, train_dataset._classes_names) num_classes = len(train_dataset._classes_names) logging.info(f"Stored labels into file {label_file}.") logging.info("Train dataset size: {}".format(len(train_dataset))) train_loader = DataLoader(train_dataset, args.batch_size, num_workers=args.num_workers, shuffle=True) # logging.info("Prepare Validation datasets.") # val_dataset = VIDDataset(args.datasets, args.cache_path, transform=test_transform, # target_transform=target_transform, is_val=True) # logging.info(val_dataset)
if __name__ == '__main__': timer = Timer() logging.info(args) config = mobilenetv1_ssd_config #config file for priors etc. train_transform = TrainAugmentation(config.image_size, config.image_mean, config.image_std) target_transform = MatchPrior(config.priors, config.center_variance, config.size_variance, 0.5) test_transform = TestTransform(config.image_size, config.image_mean, config.image_std) logging.info("Prepare training datasets.") train_dataset = VIDDataset(args.datasets, args.cache_path, transform=train_transform, target_transform=target_transform) label_file = os.path.join("models/", "vid-model-labels.txt") store_labels(label_file, train_dataset._classes_names) num_classes = len(train_dataset._classes_names) logging.info(f"Stored labels into file {label_file}.") logging.info("Train dataset size: {}".format(len(train_dataset))) train_loader = DataLoader(train_dataset, args.batch_size, num_workers=args.num_workers, shuffle=True) logging.info("Prepare Validation datasets.") val_dataset = VIDDataset(args.datasets, args.cache_path, transform=test_transform, target_transform=target_transform,
test_transform = TestTransform( config.image_size, config.image_mean, config.image_std ) # elif args.feature == "vgg19" or "resnet18": # train_transform = TrainAugmentation(224, config.image_mean, config.image_std) # target_transform = MatchPrior( # config.priors, config.center_variance, config.size_variance, 0.5 # ) # test_transform = TestTransform(224, config.image_mean, config.image_std) logging.info("Prepare training datasets.") train_dataset = VIDDataset( args.datasets, args.cache_path, transform=train_transform, target_transform=target_transform, batch_size=args.batch_size, ) label_file = os.path.join("models/", "vid-model-labels.txt") store_labels(label_file, train_dataset._classes_names) num_classes = len(train_dataset._classes_names) logging.info(f"Stored labels into file {label_file}.") logging.info("Train dataset size: {}".format(len(train_dataset))) train_loader = DataLoader( train_dataset, args.batch_size, num_workers=args.num_workers, shuffle=True ) logging.info("Prepare Validation datasets.") val_dataset = VIDDataset( args.datasets, args.cache_path,