def __getitem__(self, idx): lbl = self.lbl_list[idx] pc = np.load(self.pc_list[idx])[:self.pc_input_num].astype(np.float32) pc = normal_pc(pc) if self.status == STATUS_TRAIN: pc = pc_aug_funs(pc) pc = np.expand_dims(pc.transpose(), axis=2) return torch.from_numpy(pc).float(), lbl
def __getitem__(self, idx): views = [self.transform(Image.open(v)) for v in self.view_list[idx]] lbl = self.lbl_list[idx] pc = np.load(self.pc_list[idx])[:self.pc_input_num].astype(np.float32) pc = normal_pc(pc) if self.status == STATUS_TRAIN: pc = pc_aug_funs(pc) pc = np.expand_dims(pc.transpose(), axis=2) return torch.stack(views).float(), torch.from_numpy(pc).float(), lbl
def __getitem__(self, idx): names = osp.split(self.pc_list[idx])[1].split('.')[0] views = [self.transform(Image.open(v)) for v in self.view_list[idx]] depth = [ self.transform(Image.open(v).convert('RGB')) for v in self.dp_list[idx] ] lbl = self.lbl_list[idx] pc = np.load(self.pc_list[idx])[:self.pc_input_num].astype(np.float32) pc = normal_pc(pc) # if self.status == STATUS_TRAIN: pc = pc_aug_funs(pc) pc = np.expand_dims(pc.transpose(), axis=2) # return torch.stack(views).float(), torch.from_numpy(pc).float(), lbl, names return torch.stack(views).float(), torch.stack( depth).float(), torch.from_numpy(pc).float(), lbl