freeze_backbone = params.freeze_backbone ################################################################## pretrained_dataset = "miniImageNet" if params.test_dataset == "ISIC": print("Loading ISIC") datamgr = ISIC_few_shot.SetDataManager2(image_size, n_eposide=iter_num, n_query=15, **few_shot_params) novel_loader = datamgr.get_data_loader(num_aug=params.gen_examples) elif params.test_dataset == "EuroSAT": print("Loading EuroSAT") datamgr = EuroSAT_few_shot.SetDataManager2(image_size, n_eposide=iter_num, n_query=15, **few_shot_params) novel_loader = datamgr.get_data_loader(num_aug=params.gen_examples) elif params.test_dataset == "CropDisease": print("Loading CropDisease") datamgr = CropDisease_few_shot.SetDataManager2(image_size, n_eposide=iter_num, n_query=15, **few_shot_params) novel_loader = datamgr.get_data_loader(num_aug=params.gen_examples) elif params.test_dataset == "ChestX": print("Loading ChestX") datamgr = Chest_few_shot.SetDataManager2(image_size, n_eposide=iter_num,
test_few_shot_params = dict(n_way=params.test_n_way, n_support=params.n_shot) #if params.dataset == "miniImageNet": base_datamgr = miniImageNet_few_shot.SetDataManager( image_size, n_query=n_query, **train_few_shot_params) base_loader = base_datamgr.get_data_loader(aug=params.train_aug) # use unlabeled data from these novel domains for adversarial domain adaptation # TODO: since the data is unlabeled, we need to modify data manager / data loader if params.dataset == "ChestX": target_datamgr = Chest_few_shot.SetDataManager( image_size, n_query=n_query, **train_few_shot_params) elif params.dataset == "EuroSAT": target_datamgr = EuroSAT_few_shot.SetDataManager( image_size, n_query=n_query, **train_few_shot_params) elif params.dataset == "ISIC2018": target_datamgr = ISIC_few_shot.SetDataManager( image_size, n_query=n_query, **train_few_shot_params) elif params.dataset == "CropDiseases": target_datamgr = CropDisease_few_show.SetDataManager( image_size, n_query=n_query, **train_few_shot_params) else: raise ValueError('Unknown dataset') target_loader = target_datamgr.get_data_loader(novel_file, aug=params.train_aug)
else: modelfile = get_best_file(checkpoint_dir) if params.save_iter != -1: outfile = os.path.join( checkpoint_dir.replace("checkpoints","features"), params.dataset + "_" + str(params.save_iter)+ ".hdf5") else: outfile = os.path.join( checkpoint_dir.replace("checkpoints","features"), params.dataset + ".hdf5") if params.dataset in ["ISIC"]: datamgr = ISIC_few_shot.SimpleDataManager(image_size, batch_size = 64) data_loader = datamgr.get_data_loader(aug = False ) elif params.dataset in ["EuroSAT"]: datamgr = EuroSAT_few_shot.SimpleDataManager(image_size, batch_size = 64) data_loader = datamgr.get_data_loader(aug = False ) elif params.dataset in ["CropDisease"]: datamgr = CropDisease_few_shot.SimpleDataManager(image_size, batch_size = 64) data_loader = datamgr.get_data_loader(aug = False ) elif params.dataset in ["ChestX"]: datamgr = Chest_few_shot.SimpleDataManager(image_size, batch_size = 64) data_loader = datamgr.get_data_loader(aug = False ) model = model_dict[params.model]() model = model.cuda() tmp = torch.load(modelfile)
image_size, n_query=n_query, mode="val", **test_few_shot_params) val_loader = val_datamgr.get_data_loader(aug=False) #=========== ISIC or EuroSAT ======== few_shot_params = dict(n_way=params.test_n_way, n_support=params.n_shot) if params.method == 'mytpnadaptisic': print("init mytpnadaptisic") datamgr = ISIC_few_shot.SetDataManager(image_size, n_eposide=600, n_query=n_query, **few_shot_params) elif params.method == 'mytpnadapteurosat': print("init mytpnadapteurosat") datamgr = EuroSAT_few_shot.SetDataManager(image_size, n_eposide=600, n_query=n_query, **few_shot_params) else: raise ValueError('Unknown method') novel_loader = datamgr.get_data_loader(aug=False) #===================================== #======= load pretrained model and ckpt ======= model = MyTPN_Adapt(model_dict[params.model], **train_few_shot_params) pretrained_dataset = 'miniImageNet' checkpoint_dir = '%s/checkpoints/%s/%s_%s' % ( configs.save_dir, pretrained_dataset, params.model, params.method[:5]) if params.train_aug: checkpoint_dir += '_aug'