def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--prefix', type=str, default='default') parser.add_argument('--checkpoint', type=str, default=None) parser.add_argument('--dataset', type=str, default='ImageNet', choices=['ImageNet']) parser.add_argument('--learning_rate', type=float, default=1e-4) parser.add_argument('--lr_weight_decay', action='store_true', default=False) config = parser.parse_args() if config.dataset == 'ImageNet': import datasets.ImageNet as dataset elif config.dataset == 'SVHN': import datasets.svhn as dataset elif config.dataset == 'CIFAR10': import datasets.cifar10 as dataset else: raise ValueError(config.dataset) dataset_train, dataset_test = dataset.create_default_splits() image, _, label, _ = dataset_train.get_data(dataset_train.ids[0], dataset_train.ids[0]) config.data_info = np.concatenate([np.asarray(image.shape), np.asarray(label.shape)]) trainer = Trainer(config, dataset_train, dataset_test) log.warning("dataset: %s, learning_rate: %f", config.dataset, config.learning_rate) trainer.train(dataset_train)
def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--checkpoint_path', type=str) parser.add_argument('--train_dir', type=str) parser.add_argument('--dataset', type=str, default='ImageNet', choices=['ImageNet']) parser.add_argument('--data_id', nargs='*', default=None) config = parser.parse_args() if config.dataset == 'ImageNet': import datasets.ImageNet as dataset else: raise ValueError(config.dataset) _, dataset = dataset.create_default_splits(ratio=0.999) image, _, label, _ = dataset.get_data(dataset.ids[0], dataset.ids[0]) config.data_info = np.concatenate([np.asarray(image.shape), np.asarray(label.shape)]) evaler = Evaler(config, dataset) log.warning("dataset: %s", dataset) evaler.eval_run()