예제 #1
0
def plot_for(z, d):
    cs = CalcSimWrapper()
    ds = InputDatastore('../InputData', 'NiCu', 973)
    ce = ComparisonEngine(cs)
    D = ds.interpolated_diffusivity(10001)
    R = ds.interpolated_resistivity(10001)

    dx = 0.5 * 35e-8
    ndx = 200
    dt = 0.01
    ndt = int(2 * 60 * 60 / 0.01)

    init = ones(ndx)
    init[ndx/2:] = 0

    x = linspace(0, 25, 200)

    ddict = ds.interpolated_experiment_dict(x)

    for I in ddict.keys():
        if I == 0:
            dv = 1
        else:
            dv = d
        r = cs.emigration_factor(z, I, 973)
        mdl = cs.calc_simulation(D, R, init, ndt, dt, dx, r, dv)
        ce = ComparisonEngine(cs)
        lsq, shfit = ce.calibrate(mdl, ddict[I])
        smdl = ce.shift_data(mdl)
        plot(x, ddict[I], label=str.format('Exper. (I={} A/cm^2)', I/100/100))
        plot(x, smdl, label=str.format('Model. (I={} A/cm^2)', I/100/100))

    legend(loc=3)
    show()
예제 #2
0
def basic_test():
    cs = CalcSimWrapper()
    ds = InputDatastore('../InputData', 'NiCu', 973)
    ce = ComparisonEngine(cs)

    D = ds.interpolated_diffusivity(10001)
    R = ds.interpolated_resistivity(10001)

    dx = 0.5*35e-8
    ndx = 200
    dt = cs.optimum_dt(dx, D, 1)
    ndt = cs.num_sim_steps(dt, 2 * 60 * 60)

    init = np.ones(ndx)
    init[ndx/2:] = 0

    res = cs.calc_simulation(D, R, init, ndt, dt, dx, 0, 1)
    res = cs.calc_simulation(D, R, init, ndt, dt, dx, 0, 1)
    x = np.linspace(0, dx * ndx, num=ndx)
    plot(x, res)
    show()
예제 #3
0
from calcsim import CalcSimWrapper
from datastore import InputDatastore
import numpy as np
from pylab import *

ds = InputDatastore('../InputData', 'NiCu', 973)
cs = CalcSimWrapper()

D = ds.interpolated_diffusivity(10001)
R = ds.interpolated_resistivity(10001)

dx = 0.5*35e-8
ndx = 200
dt = cs.optimum_dt(dx, D, 1)
ndt = cs.num_sim_steps(dt, 2 * 60 * 60)

init = np.ones(ndx)
init[ndx/2:] = 0

res = cs.calc_simulation(D, R, init, ndt, dt, dx, 0, 1)
x = np.linspace(0, dx * ndx, num=ndx)
plot(x, res)
show()
예제 #4
0
from datastore import InputDatastore
from calcsim import CalcSimWrapper 
from numpy import *
from scipy.optimize import *
from expercomparison import ComparisonEngine
from itertools import product

ds = InputDatastore('../InputData', 'NiCu')
x = linspace(0, 25, num=100)
fedict = ds.edict_for_direction('forward')
redict = ds.edict_for_direction('reverse')
fexpr = ds.interpolated_experiment_dict(x, fedict)
rexpr = ds.interpolated_experiment_dict(x, redict)
diffusivity = ds.interpolated_diffusivity(1001, 973)
resistivity = ds.interpolated_resistivity(1001, 973)

cs = CalcSimWrapper()
ce = ComparisonEngine(cs)
initcond = ones(100)
initcond[50:] = 0


dt = 0.05
ndt = int(2 * 60 * 60 / 0.05)
dx = 25e-6 / 100

def make_objective(I, direction):
    if direction == 'forward':
        exprd = fexpr[I]
    else:
예제 #5
0
                     help='Effective valence')
aparser.add_argument('--cvf', type=float, required=True,
                     help='Vacancy concentration factor')
aparser.add_argument('--direction', type=str, default='forward',
                     help='Direction of application of current')

args = aparser.parse_args()

accelcs = CalcSimWrapper()
dstore = InputDatastore(args.inputdata, args.dataprefix, 973, args.direction)
ce = ComparisonEngine(accelcs)

x = np.linspace(0, 25, num=100)
exper_data = dstore.interpolated_experiment_dict(x)[args.current]
diffusivity = dstore.interpolated_diffusivity(10001)
resistivity = dstore.interpolated_resistivity(10001)
init_cond = np.ones(100)
init_cond[50:] = 0

emigration_T = 973
dt = 0.05
ndt = int(2 * 60 * 60 / 0.05)
dx = 25e-6 / 100

r = accelcs.emigration_factor(args.z, args.current * 100 * 100, emigration_T)
simd = accelcs.calc_simulation(diffusivity, resistivity, init_cond, ndt, dt, dx, r, args.cvf)
lsq, shift = ce.calibrate(simd, exper_data)
shifted_simd = ce.shift_data(simd)
full_simd = np.column_stack((x, shifted_simd))
full_exper = np.column_stack((x, exper_data))
dmplots.plot_sim_fit(full_simd, full_exper, args.current, args.z, args.cvf, args.direction, args.output)
예제 #6
0
        z_plotlist.append(z_best)

    z_plotarr = np.array(z_plotlist)
    plotarr = np.column_stack((I_plotarr, z_plotarr))
    outfname = os.path.join(args.outputdir, str.format("zplot_{}.png", direction))
    dmplots.plot_z_function(plotarr, direction, outfname)

    # we should be nice and print comparison plots
    if direction == "forward" or direction == "reverse":
        x = np.linspace(0, 25, num=100)
        dstore = InputDatastore(args.inputdata, args.dataprefix)
        edict = dstore.edict_for_direction(direction)
        accelcs = CalcSimWrapper()
        ce = ComparisonEngine(accelcs)
        diffusivity = dstore.interpolated_diffusivity(10001, args.temperature, precise=True)
        resistivity = dstore.interpolated_resistivity(10001, args.temperature)
        init_cond = np.ones(100)
        init_cond[50:] = 0
        emigration_T = args.temperature
        dt = 0.05
        ndt = int(2 * 60 * 60 / 0.05)
        dx = 25e-6 / 100
        for I in result_stash.keys():
            cvf_best = cvfrange[result_stash[I][zaverage_index, :].argmin()]
            if direction == "forward":
                exper_data = dstore.interpolated_experiment_dict(x, edict)[I]
                r = accelcs.emigration_factor(zaverage_rounded, I * 100 * 100, emigration_T)
            else:
                exper_data = dstore.interpolated_experiment_dict(x, edict)[I]
                r = accelcs.emigration_factor(zaverage_rounded, -I * 100 * 100, emigration_T)
            simd = accelcs.calc_simulation(diffusivity, resistivity, init_cond, ndt, dt, dx, r, cvf_best)