print pd.DataFrame({'values': [(len(y)/K)*(K-1)]}, index=['Training Size / Fold']) print cv_results print "==============================================================================" # time period cutoffs in minutes from start time_period_cutoffs = (30, 180, 420, 450) #quotes, trades = get_data('XLE', 2012, 1, 5, bar_width='second') data = get_more_data('XLE', 2012, 2, 1, days=1, bar_width='second') hls = [10, 40, 100] for quotes, trades in data: features.label_data(quotes, label_hls=hls) features.add_ema(quotes, halflives=hls) features.add_dema(quotes, halflives=hls) features.add_momentum(quotes, halflives=hls) features.add_log_return_ema(quotes, halflives=hls) #features.add_trade_momentum(quotes, trades, bar_width='second') features.add_price_diff(quotes) features.add_size_diff(quotes) #features.add_trade_momentum_dema(quotes, trades, halflife=40) quotes_list, trades_list = zip(*data) quotes = pd.concat(quotes_list) trades = pd.concat(trades_list) feature_names = ['momentum', 'dEMA_10', 'dEMA_40', 'dEMA_100', 'log_returns_10-', 'log_returns_40-', 'log_returns_100-', 'log_returns_std_10-', 'log_returns_std_40-', 'size_diff',
crossover_hls = (10, 40) filter_feature_names = [] #filter_feature_names = ['crossover?', 'high_momentum?', 'dEMA_10_sign_change?', 'dEMA_40_sign_change?'] feature_names = [] for data, trades in datas: features.add_future_log_returns(data, label_hls=hls) features.add_future_log_returns_rolling(data, windows=(10, 30, 60)) feature_names += features.add_price_dema(data, halflives=hls) feature_names += features.add_momentum(data, halflives=hls) feature_names += features.add_log_return_ema(data, halflives=hls) feature_names += features.add_price_diff(data) feature_names += features.add_size_diff(data) #feature_names += features.add_vpin_time(data, window=dt.timedelta(seconds=20)) feature_names += features.add_dema(data, features=['momentum', 'dEMA_10', 'dEMA_40', 'dEMA_100']) #filter_feature_names += features.add_crossover_filter(data, halflives=crossover_hls) #filter_feature_names += features.add_high_momentum_filter(data, cutoff=0.1, halflives=(10, 40, 100)) #filter_feature_names += features.add_dema_sign_change_filter(data, halflife=10) #filter_feature_names += features.add_dema_sign_change_filter(data, halflife=40) features.add_crossover_filter(data, halflives=crossover_hls) features.add_high_momentum_filter(data, cutoff=0.1, halflives=(10, 40, 100)) add_dema_sign_change_filter(data, halflife=10) add_dema_sign_change_filter(data, halflife=40) feature_names = list(set(feature_names)) data = pd.concat(zip(*datas)[0]) #quotes_list, trades_list = zip(*data)